Abstract

The combination of selective chemical etching and atomic force microscopy has been used for the first time to make ultra-high spatial resolution (20 nm) index of refraction profiles of femtosecond laser modified structures in silica glass.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Q. Zhong and D. Inniss, �??Characterization of the lightguiding structure of optical fiber by atomic force microscopy,�?? J. Lightwave Technol. 12, 1517-1523 (1994).
    [CrossRef]
  2. K. Raine, J. Baines and D. Putland, �??Refractive index profiling �?? state of the art,�?? J. Lightwave Technol. 7, 1162-1169 (1989).
    [CrossRef]
  3. N. Gisin and B. Perny, �??Optical fiber characterization by simultaneous measurement of the transmitted and refracted near field,�?? J. Lightwave Technol. 11, 1875-1883 (1993).
    [CrossRef]
  4. R. Taylor and C. Hnatovsky, �??High resolution index of refraction profiling of optical waveguides,�?? Proc. SPIE 4833, 811-819 (2003).
    [CrossRef]
  5. J. Kang and C. Musgrave, �??The mechanism of HF/H2O chemical etching of SiO2,�?? J. Chem. Phys. 116, 275-280 (2002).
    [CrossRef]
  6. S. Huntington, P. Mulvaney, A. Roberts, K. Nugent and M. Bazylenko, �??Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,�?? J. Appl. Phys. 82, 510-512 (1997).
    [CrossRef]
  7. K. Chen, P. Herman, R. Taylor and C. Hnatovsky, �??Photosensitivity and application with 157 nm F2 laser radiation in planar lightwave circuits,�?? J. Lightwave Technol. 21, 140-148 (2003).
    [CrossRef]
  8. A. Streltsov and N. Borrelli, �??Study of femtosecond-laser-written waveguides in glasses,�?? J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  9. H.Wang, �??Multiple refractive index profiling of optical fibers using the reflection and refracted near-fields methods,�?? Optik 102, 36-40 (1996).
  10. M. Ikeda, M. Tateda and H.Yoshikiyo, �??Refractive index profile of a graded index fiber: measurement by a reflection method,�?? Appl. Opt. 14, 814-815 (1975).
    [CrossRef] [PubMed]
  11. R. Taylor, C. Hnatovsky, E. Simova, D. Rayner, R. Bhardwaj and P. Corkum, �??Femtosecond laser fabrication of nanostructures in silica glass,�?? accepted to Opt. Lett., 2003.
    [CrossRef] [PubMed]
  12. L. Sudrie, M.Franco, B. Prade and A. Mysyrowicz, �??Study of damage in fused silica induced by ultra-short IR laser pulses,�?? Opt. Commun. 191, 333-339 (2001).
    [CrossRef]
  13. C. Schaffer, J. Aus der Au, E. Mazur and J. Squier, �??Micromachining and material change characterization using femtosecond laser oscillators,�?? Proc. SPIE, 4633, 112-118 (2002).
    [CrossRef]
  14. T. Gorelik, M. Will, S.Nolte, A. Tuennermann and U. Glatzel, �??Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,�?? Appl. Phys. A 76, 309-311 (2003).
    [CrossRef]
  15. O. L. Bourne, D. M Rayner, P. B. Corkum, M. Mehendale, and A. Naumov, �??Methods for creating optical structures in dielectrics using controlled energy deposition,�?? International Application Published Under the Patent Cooperation Treaty (PCT) WO 02/16070 A2, 2002.
  16. R. Taylor and K. Leopold, �??Probe microscopy for photonic applications,�?? Microscopy and Analysis, May, 15-17 (1999).
  17. J. Chan, T. Huser, S. Risbud and D. Krol, �??Structural changes in fused silica after exposure to focused femtosecond laser pulses,�?? Opt. Lett. 26, 1726-1728 (2001).
    [CrossRef]
  18. R. Devine, R. Dupree, I. Farnan and J. Capponi, �??Pressure-induced bond-angle variation in amorphous SiO2,�?? Phys. Rev. B 35, 2560-2562 (1987).
    [CrossRef]
  19. A.Gusarov and D. Boyle, �??Contribution of photoinduced densification to refractive-index modulation in Bragg gratings written in Ge-doped silica fibers,�?? Opt. Lett. 25, 872-874 (2000).
    [CrossRef]
  20. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo and H. Misawa, �??Femtosecond laserassisted three-dimensional microfabrication in silica,�?? Opt. Lett. 26, 277-279 (2001).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

T. Gorelik, M. Will, S.Nolte, A. Tuennermann and U. Glatzel, �??Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,�?? Appl. Phys. A 76, 309-311 (2003).
[CrossRef]

J. Appl. Phys. (1)

S. Huntington, P. Mulvaney, A. Roberts, K. Nugent and M. Bazylenko, �??Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,�?? J. Appl. Phys. 82, 510-512 (1997).
[CrossRef]

J. Chem. Phys. (1)

J. Kang and C. Musgrave, �??The mechanism of HF/H2O chemical etching of SiO2,�?? J. Chem. Phys. 116, 275-280 (2002).
[CrossRef]

J. Lightwave Technol. (4)

Q. Zhong and D. Inniss, �??Characterization of the lightguiding structure of optical fiber by atomic force microscopy,�?? J. Lightwave Technol. 12, 1517-1523 (1994).
[CrossRef]

K. Raine, J. Baines and D. Putland, �??Refractive index profiling �?? state of the art,�?? J. Lightwave Technol. 7, 1162-1169 (1989).
[CrossRef]

N. Gisin and B. Perny, �??Optical fiber characterization by simultaneous measurement of the transmitted and refracted near field,�?? J. Lightwave Technol. 11, 1875-1883 (1993).
[CrossRef]

K. Chen, P. Herman, R. Taylor and C. Hnatovsky, �??Photosensitivity and application with 157 nm F2 laser radiation in planar lightwave circuits,�?? J. Lightwave Technol. 21, 140-148 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microscopy and Analysis (1)

R. Taylor and K. Leopold, �??Probe microscopy for photonic applications,�?? Microscopy and Analysis, May, 15-17 (1999).

Opt. Commun. (1)

L. Sudrie, M.Franco, B. Prade and A. Mysyrowicz, �??Study of damage in fused silica induced by ultra-short IR laser pulses,�?? Opt. Commun. 191, 333-339 (2001).
[CrossRef]

Opt. Lett. (4)

Optik (1)

H.Wang, �??Multiple refractive index profiling of optical fibers using the reflection and refracted near-fields methods,�?? Optik 102, 36-40 (1996).

Phys. Rev. B (1)

R. Devine, R. Dupree, I. Farnan and J. Capponi, �??Pressure-induced bond-angle variation in amorphous SiO2,�?? Phys. Rev. B 35, 2560-2562 (1987).
[CrossRef]

Proc. SPIE (2)

C. Schaffer, J. Aus der Au, E. Mazur and J. Squier, �??Micromachining and material change characterization using femtosecond laser oscillators,�?? Proc. SPIE, 4633, 112-118 (2002).
[CrossRef]

R. Taylor and C. Hnatovsky, �??High resolution index of refraction profiling of optical waveguides,�?? Proc. SPIE 4833, 811-819 (2003).
[CrossRef]

Other (1)

O. L. Bourne, D. M Rayner, P. B. Corkum, M. Mehendale, and A. Naumov, �??Methods for creating optical structures in dielectrics using controlled energy deposition,�?? International Application Published Under the Patent Cooperation Treaty (PCT) WO 02/16070 A2, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Inverted cross-sectional AFM image of a chemically etched longitudinally written waveguide. The laser was operated at a repetition rate of 250 kHz and an average power of 175 mW. The scan rate was 100 µm/s. The width of the flat-topped region is ≈ 1.7 µm.

Fig. 2.
Fig. 2.

Index of refraction profiles (arbitrary units) across the longitudinally written waveguide shown in Fig.1 and obtained using the chemical etching/AFM and microreflectivity techniques.

Fig. 3.
Fig. 3.

Average AFM etch depth (1%HF,6 minutes) as a function of induced index change measured using microreflectivity averaged across the width of five waveguides written with an aspherical lens using a femtosecond laser power of 250mW and under the following conditions: (◆) 15°, 100µm/s, (■) 15°,50µm/s, (▲) 10°,100µm/s, (▪) 10°, 50 µm/s and (●) 6°, 50µm/s. The line shown in the figure is the best line visually through the data and the origin. The error bars indicate the experimental uncertainty on the AFM and microreflectivity data, which is higher for the lower index changes.

Fig. 4.
Fig. 4.

Inverted AFM image of the cross-section of an etched tapered conical structure in a silica glass sample. The etch depth (before inversion) was ≈ 40 nm over the entire conical structure. The structure was produced by focussing (NA=0.65) a 30 mW, 100 kHz laser beam ≈ 150 µm below the top surface and translating the sample perpendicular to the laser beam at a scan rate of 25 µm/s. The sample was then cut in two pieces transverse to the scan direction. One of the inside surfaces was polished then etched (1% HF for 3 min) and placed under the AFM. The focussed femtosecond laser light entered from the top of the image.

Metrics