Abstract

We demonstrate the use of a spatial light modulator (SLM) to facilitate the trapping of particles in three-dimensional structures through time-sharing. This method allows particles to be held in complex, three-dimensional configurations using cycling of simple holograms. Importantly, we discuss limiting factors inherent in current phase only SLM design for applications in both optical tweezing and atom trapping.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, "Accelerating and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, et al., "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  3. J.-M. R. Fournier, M. M. Burns and J. A. Golovchenko, "Writing Diffractive Structures by Optical Trapping," Proceedings SPIE - The International Society for Optical Engineering, 2406, 101-111 (1995).
  4. P. T. Korda, G. C. Spalding and D. G. Grier, "Evolution of a colloidal critical state in an optical pinning potential landscape," Phys. Rev. B 66, 024504 (2002).
    [CrossRef]
  5. S. A. Tatarkova, W. Sibbett and K. Dholakia, "Brownian Particle in an Optical Potential of the Washboard Type," Phys. Rev. Lett. 91, 038101 (2003).
    [CrossRef] [PubMed]
  6. M. Brunner and C. Bechinger, "Phase behavior of colloidal molecular crystals on triangular light lattices," Phys. Rev. Lett. 88, art. no.-248302 (2002).
    [CrossRef] [PubMed]
  7. G. J. Brouhard, H. T. Schek and A. J. Hunt, "Advanced optical tweezers for the study of cellular and molecular biomechanics," IEEE Trans. Biomed. Eng 50, 121-125 (2003).
    [CrossRef] [PubMed]
  8. R. Nambiar and J. C. Meiners, "Fast position measurements with scanning line optical tweezers," Opt. Lett. 27, 836-838 (2002).
    [CrossRef]
  9. A. van Blaaderen, J. P. Hoogenboom, D. L. J. Vossen, et al., "Colloidal epitaxy: Playing with the boundary conditions of colloidal crystallization," Faraday Discussions 123, 107-119 (2003).
    [CrossRef]
  10. W. J. Hossack, E. Theofanidou, J. Crain, et al., "High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay," Opt. Express 11, 2053-2059 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2053.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2053.</a>
    [CrossRef] [PubMed]
  11. R. W. Gerchberg, "Superresolution through Error Function Extrapolation," IEEE Trans. Acoustics Speech and Signal Processing 37, 1603-1606 (1989).
    [CrossRef]
  12. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  13. L. B. Lesem, P. M. Hirsch and J. A. Jordon, "The kinoform: a new wavefront reconstruction device," IBM J. Res. Develop. 150-155 (1969).
    [CrossRef]
  14. J. E. Curtis, B. A. Koss and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  15. V. Bingelyte, J. Leach, J. Courtial, et al., "Optically controlled three-dimensional rotation of microscopic objects," App. Phys. Lett. 82, 829-831 (2003).
    [CrossRef]
  16. J. Leach, G. Sinclair, P. Jordan, et al., "3D Manipulation of Particles into Crystal Structures using Holographic Optical Tweezers," Opt. Express (in press).
  17. D. McGloin, G. C. Spalding, H. Melville, et al., "Applications of spatial light modulators in atom optics," Opt. Express 11, 158-166 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-158.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-158.</a>
    [CrossRef] [PubMed]
  18. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, et al., "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
    [CrossRef] [PubMed]

App. Phys. Lett. (1)

V. Bingelyte, J. Leach, J. Courtial, et al., "Optically controlled three-dimensional rotation of microscopic objects," App. Phys. Lett. 82, 829-831 (2003).
[CrossRef]

Faraday Discussions (1)

A. van Blaaderen, J. P. Hoogenboom, D. L. J. Vossen, et al., "Colloidal epitaxy: Playing with the boundary conditions of colloidal crystallization," Faraday Discussions 123, 107-119 (2003).
[CrossRef]

IBM J. Res. Develop. (1)

L. B. Lesem, P. M. Hirsch and J. A. Jordon, "The kinoform: a new wavefront reconstruction device," IBM J. Res. Develop. 150-155 (1969).
[CrossRef]

IEEE Trans. Ac. Sp. & Signal Processing (1)

R. W. Gerchberg, "Superresolution through Error Function Extrapolation," IEEE Trans. Acoustics Speech and Signal Processing 37, 1603-1606 (1989).
[CrossRef]

IEEE Trans. Biomed. Eng (1)

G. J. Brouhard, H. T. Schek and A. J. Hunt, "Advanced optical tweezers for the study of cellular and molecular biomechanics," IEEE Trans. Biomed. Eng 50, 121-125 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Optik (1)

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Phys. Rev. B (1)

P. T. Korda, G. C. Spalding and D. G. Grier, "Evolution of a colloidal critical state in an optical pinning potential landscape," Phys. Rev. B 66, 024504 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

S. A. Tatarkova, W. Sibbett and K. Dholakia, "Brownian Particle in an Optical Potential of the Washboard Type," Phys. Rev. Lett. 91, 038101 (2003).
[CrossRef] [PubMed]

M. Brunner and C. Bechinger, "Phase behavior of colloidal molecular crystals on triangular light lattices," Phys. Rev. Lett. 88, art. no.-248302 (2002).
[CrossRef] [PubMed]

A. Ashkin, "Accelerating and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Proceedings SPIE (1)

J.-M. R. Fournier, M. M. Burns and J. A. Golovchenko, "Writing Diffractive Structures by Optical Trapping," Proceedings SPIE - The International Society for Optical Engineering, 2406, 101-111 (1995).

Science (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, et al., "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A simple optical Tweezer setup including a spatial light modulator for holographic tweezing (beam expansion optics not shown)

Fig. 2.
Fig. 2.

Trapping configurations demonstrated using the Hamamatsu SLM with 2µm silica spheres. (a) two particles trapped in two different planes, the out of focus particle has been lifted above the focal plane of the microscope objective. (b) a triangular pyramid with the out of focus particle again lifted above the others. (c) an inverted pyramid, this time with the central trap site lower than the other particles.

Fig. 3.
Fig. 3.

2.3µm spheres trapped in three dimensional configurations using the Boulder SLM (a) two planes in a star of david configuration and (b) three particles in three different planes

Fig. 4.
Fig. 4.

Six particles trapped in six separate planes using the Boulder SLM.

Fig. 5.
Fig. 5.

Graphs showing the rise time of the Boulder SLM (grey) and the resultant clipping occurring at 50Hz (black).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Φ z ( ρ ¯ ) = 2 π ρ 2 z λ f 2 mod 2 π

Metrics