Abstract

We discuss the effect of UV laser exposure time, repetition rate, and heating by a heating coil on the resonance peak depth and polarization-dependent loss (PDL) of long-period fiber gratings (LPFGs). The LPFGs were fabricated with a KrF excimer laser and an amplitude mask. We observed an initial increase of the resonance peak depth and PDL as the UV exposure time was increased, which eventually decreased in response to over-coupling. With the total UV fluence kept constant, the peak depth continued to increase as the repetition rate was increased beyond 10 Hz, whereas the maximum PDL decreased when the repetition rate was higher than 17 Hz. This is believed to be a thermal effect caused by the rapid delivery of UV laser pulses. We observed a similar reduction of the maximum PDL from 1.35 to 0.25 dB when the fiber was heated by an adjacent heating coil.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, �??Long-period fiber gratings as band-rejection filters,�?? J. Lightwave Technol. 14, 58-65 (1996)
    [CrossRef]
  2. V. Bhatia, T. D. Alberto, K. A. Murphy, and R. O. Claus, �??Optical fiber long-period grating sensors,�?? Opt. Lett. 21, 692-694 (1996)
    [CrossRef] [PubMed]
  3. S. Yoshida, S. Kuwano, and K. Iwashita, �??Gain-flattened EDFA with high Al concentration for multistage repeated WDM transmission systems,�?? Electron. Lett. 31, 1765-1767 (1995).
    [CrossRef]
  4. P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K.W.Wecht, �??Stable single-mode hybrid laser with high power and narrow linewidth,�?? Appl. Phys. Lett. 64, 2634-2636 (1994)
    [CrossRef]
  5. T. Meyer, P. A. Nicati, P. A. Robert, D. Varelas, H. G. Limberger, and R. P. Salathe, �??Reversibility of photoinduced birefringence in ultra-low birefringence fibers,�?? Opt. Lett. 21, 1661-1663 (1996)
    [CrossRef] [PubMed]
  6. M. Schiano and G. Zaffiro, �??Polarization mode dispersion in chirped fiber gratings,�?? in Proceedings of the European Conference on Optical Communications (IEEE, New York, 1998), Vol. I, pp. 403-404
  7. E. Ciaramella, E. Riccardi, and M. Schiano, �??System penalties due to the polarization mode dispersion of chirped gratings,�?? in Proceedings of the European Conference on Optical Communications (IEEE, New York, 1998), Vol. I, pp. 515-516
  8. Y. Zhu, P. Berini, E. Simova, and C. P. Grover, �??Wavelength-dependent PDL measurements in fiber gratings,�?? in Conference on Lasers and Electro-Optics, CLEO 99 (Optical Society of America, Washington, D.C., 1999)
  9. P. St. J. Russell and D. P. Hand, �??Rocking filter formation in photosensitive high birefringence optical fibers,�?? Electron. Lett. 26, 1846-1848 (1990).
    [CrossRef]
  10. T. Erdogan and V. Mizrahi, �??Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,�?? J. Opt. Soc. Am. B 11, 2100-2105 (1994)
    [CrossRef]
  11. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Redd, P. J. Lemaire, and S. G. Kosinski, �??Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,�?? Opt. Lett. 19, 1260-1262 (1994).
    [CrossRef] [PubMed]
  12. M. Poirier, S. Thibault, J. Lauzon, and F. Quellette, �??Dynamic and orientational behavior of UV-induced luminescence bleaching in Ge-doped silica optical fiber,�?? Opt. Lett. 18, 870-872 (1993)
    [CrossRef] [PubMed]
  13. K. Dossou, S. LaRochelle, and M. Fontaine, �??Numerical analysis of the contribution of the transverse asymmetry in the photoinduced index change profile to the birefringence of optical fiber,�?? J. Lightwave Technol. 20, 1463-1470 (2002).
    [CrossRef]
  14. M. Fokine and W. Margulis, �??Large increase in photosensitivity through massive hydroxyl formation,�?? in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides, OSA Technical Digest (Optical Society of America, Washington, D.C., 1999), paper PD4.
  15. G. Brambilla, V. Pruneri, L. Reekie, and D. N. Payne, �??Enhanced photosensitivity in germanosilicate fibers exposed to CO2 laser radiation,�?? Opt. Lett. 24, 1023-1025 (1999)
    [CrossRef]
  16. T. Erdogan, �??Fiber grating spectra,�?? J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]

Appl. Phys. Lett. (1)

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K.W.Wecht, �??Stable single-mode hybrid laser with high power and narrow linewidth,�?? Appl. Phys. Lett. 64, 2634-2636 (1994)
[CrossRef]

Bragg Gratings 1999 OSA Technical Digest (1)

M. Fokine and W. Margulis, �??Large increase in photosensitivity through massive hydroxyl formation,�?? in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides, OSA Technical Digest (Optical Society of America, Washington, D.C., 1999), paper PD4.

CLEO 1999 (1)

Y. Zhu, P. Berini, E. Simova, and C. P. Grover, �??Wavelength-dependent PDL measurements in fiber gratings,�?? in Conference on Lasers and Electro-Optics, CLEO 99 (Optical Society of America, Washington, D.C., 1999)

ECOC 1998 (1)

M. Schiano and G. Zaffiro, �??Polarization mode dispersion in chirped fiber gratings,�?? in Proceedings of the European Conference on Optical Communications (IEEE, New York, 1998), Vol. I, pp. 403-404

Electron. Lett. (2)

S. Yoshida, S. Kuwano, and K. Iwashita, �??Gain-flattened EDFA with high Al concentration for multistage repeated WDM transmission systems,�?? Electron. Lett. 31, 1765-1767 (1995).
[CrossRef]

P. St. J. Russell and D. P. Hand, �??Rocking filter formation in photosensitive high birefringence optical fibers,�?? Electron. Lett. 26, 1846-1848 (1990).
[CrossRef]

European Conf. on Optical Commun. 1998 (1)

E. Ciaramella, E. Riccardi, and M. Schiano, �??System penalties due to the polarization mode dispersion of chirped gratings,�?? in Proceedings of the European Conference on Optical Communications (IEEE, New York, 1998), Vol. I, pp. 515-516

J. Lightwave Technol. (3)

K. Dossou, S. LaRochelle, and M. Fontaine, �??Numerical analysis of the contribution of the transverse asymmetry in the photoinduced index change profile to the birefringence of optical fiber,�?? J. Lightwave Technol. 20, 1463-1470 (2002).
[CrossRef]

T. Erdogan, �??Fiber grating spectra,�?? J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, �??Long-period fiber gratings as band-rejection filters,�?? J. Lightwave Technol. 14, 58-65 (1996)
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett (1)

T. Meyer, P. A. Nicati, P. A. Robert, D. Varelas, H. G. Limberger, and R. P. Salathe, �??Reversibility of photoinduced birefringence in ultra-low birefringence fibers,�?? Opt. Lett. 21, 1661-1663 (1996)
[CrossRef] [PubMed]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simulations of the transmission spectra and PDL of LPFGs with the birefringence of 4×10-6, the grating period (Λ) of 450 µm, and the length (L) of 2.5 cm.

Fig. 2.
Fig. 2.

Setup for fabrication of LPFGs and measurements of the spectral characteristics.

Fig. 3.
Fig. 3.

Measurement results of the resonance peak depth and maximum PDL of LPFGs. The peak depth increases initially with the exposure time and then begins to decrease as a result of overcoupling. The maximum PDL also shows a similar tendency.

Fig. 4.
Fig. 4.

Maximum PDL values and spectral peak depth of LPFGs fabricated with various UV laser-pulse repetition rates.

Fig. 5.
Fig. 5.

Measurement results for the LPFGs fabricated with thermal treatment by a heating coil: (a) maximum PDL and (b) exposure time taken to reach the 5-dB peak depth.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ i = [ n co ( i ) n cl ] Λ ,

Metrics