Abstract

A largely tunable chirped fiber Bragg grating (CFBG)-based dispersion compensator with fixed center wavelength is demonstrated. Tunable dispersion ranging from 178 to 2126 ps/nm, corresponding to a large range of 3-db bandwidth from 0.42 to 5.04 nm, is realized by using a 10 cm-long CFBG with an original bandwidth of 1.61 nm. The variation in center wavelength is less than 0.2 nm.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Variable-spectral-response optical waveguide Bragg grating filters for optical signal processing

K. O. Hill, B. Malo, F. Bilodeau, S. Thériault, D. C. Johnson, and J. Albert
Opt. Lett. 20(12) 1438-1440 (1995)

Temperature insensitive measurements of static displacements using a fiber Bragg grating

Yinian Zhu, Ping Shum, Chao Lu, M. B. Lacquet, P. L. Swart, A. A. Chtcherbakov, and S. J. Spammer
Opt. Express 11(16) 1918-1924 (2003)

Tunable PMD compensator based on high-birefringence linearly chirped FBG with cantilever beam

Muguang Wang, Tangjun Li, and Shuisheng Jian
Opt. Express 11(19) 2354-2363 (2003)

References

  • View by:
  • |
  • |
  • |

  1. V. Gusmeroli and D. Scarano, “Fiber grating dispersion compensator,” OFC (Optical Society of America, Washington, D.C., 1999) 4, 11–13.
  2. R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, “1.3 m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett. 32, 1807–1809 (1996).
    [Crossref]
  3. M. K. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
    [Crossref]
  4. J. Lauzon, S. Thibault, J. Martin, and F. Ouelletter, “Implementation and characterization of fiber Bragg grating linearly chirped by a temperature-gradient,” Opt. Lett. 19, 2027–2029 (1994).
    [Crossref] [PubMed]
  5. M.L. Blanc, S. Y. Huang, M. M. Ohn, and R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever bed,” Electron. Lett. 30, 2163–2165 (1994).
    [Crossref]
  6. M. M. Ohn, A. t. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill., “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000–2001, (1996).
    [Crossref]
  7. B. J. Eggleton, J. A. Rogers, P. S. Westbook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensation fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854–856 (1999).
    [Crossref]
  8. J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
    [Crossref]
  9. N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, “Electrically tunable dispersion compensator with fixed center wavelength using fiber Bragg grating,” J. Lightwave Technol. 21, 1568–1575 (2003).
    [Crossref]
  10. X. Dong, B.-O. Guan, S. Yuan, X. Dong, and H.-Y. Tam, “Strain gradient chirp of fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202, 91–95 (2002).
    [Crossref]

2003 (1)

2002 (1)

X. Dong, B.-O. Guan, S. Yuan, X. Dong, and H.-Y. Tam, “Strain gradient chirp of fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202, 91–95 (2002).
[Crossref]

1999 (1)

B. J. Eggleton, J. A. Rogers, P. S. Westbook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensation fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854–856 (1999).
[Crossref]

1997 (2)

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[Crossref]

M. K. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[Crossref]

1996 (2)

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, “1.3 m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett. 32, 1807–1809 (1996).
[Crossref]

M. M. Ohn, A. t. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill., “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000–2001, (1996).
[Crossref]

1994 (2)

J. Lauzon, S. Thibault, J. Martin, and F. Ouelletter, “Implementation and characterization of fiber Bragg grating linearly chirped by a temperature-gradient,” Opt. Lett. 19, 2027–2029 (1994).
[Crossref] [PubMed]

M.L. Blanc, S. Y. Huang, M. M. Ohn, and R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever bed,” Electron. Lett. 30, 2163–2165 (1994).
[Crossref]

Alavie, A. t.

M. M. Ohn, A. t. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill., “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000–2001, (1996).
[Crossref]

Andres, M. V.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[Crossref]

Armes, D. J.

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, “1.3 m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett. 32, 1807–1809 (1996).
[Crossref]

Bilodeau, F.

M. M. Ohn, A. t. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill., “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000–2001, (1996).
[Crossref]

Blanc, M.L.

M.L. Blanc, S. Y. Huang, M. M. Ohn, and R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever bed,” Electron. Lett. 30, 2163–2165 (1994).
[Crossref]

Cole, M. J.

M. K. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[Crossref]

Cruz, J. L.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[Crossref]

Diez, A.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[Crossref]

Dong, L.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[Crossref]

Dong, X.

X. Dong, B.-O. Guan, S. Yuan, X. Dong, and H.-Y. Tam, “Strain gradient chirp of fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202, 91–95 (2002).
[Crossref]

X. Dong, B.-O. Guan, S. Yuan, X. Dong, and H.-Y. Tam, “Strain gradient chirp of fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202, 91–95 (2002).
[Crossref]

Durkin, M. K.

M. K. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, J. A. Rogers, P. S. Westbook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensation fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854–856 (1999).
[Crossref]

Froehlich, H.-G.

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, “1.3 m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett. 32, 1807–1809 (1996).
[Crossref]

Guan, B.-O.

X. Dong, B.-O. Guan, S. Yuan, X. Dong, and H.-Y. Tam, “Strain gradient chirp of fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202, 91–95 (2002).
[Crossref]

Gusmeroli, V.

V. Gusmeroli and D. Scarano, “Fiber grating dispersion compensator,” OFC (Optical Society of America, Washington, D.C., 1999) 4, 11–13.

Hill, K. O.

M. M. Ohn, A. t. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill., “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000–2001, (1996).
[Crossref]

Huang, S. Y.

M.L. Blanc, S. Y. Huang, M. M. Ohn, and R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever bed,” Electron. Lett. 30, 2163–2165 (1994).
[Crossref]

Ibsen, M.

M. K. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[Crossref]

Kashyap, R.

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, “1.3 m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett. 32, 1807–1809 (1996).
[Crossref]

Laming, R. I.

M. K. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[Crossref]

Lauzon, J.

Li, S. Y.

Maaskant, R.

M. M. Ohn, A. t. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill., “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000–2001, (1996).
[Crossref]

Martin, J.

Measures, R. M.

M.L. Blanc, S. Y. Huang, M. M. Ohn, and R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever bed,” Electron. Lett. 30, 2163–2165 (1994).
[Crossref]

Ngo, N. Q.

Ohn, M. M.

M. M. Ohn, A. t. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill., “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000–2001, (1996).
[Crossref]

M.L. Blanc, S. Y. Huang, M. M. Ohn, and R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever bed,” Electron. Lett. 30, 2163–2165 (1994).
[Crossref]

Ortega, B.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[Crossref]

Ouelletter, F.

Rogers, J. A.

B. J. Eggleton, J. A. Rogers, P. S. Westbook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensation fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854–856 (1999).
[Crossref]

Scarano, D.

V. Gusmeroli and D. Scarano, “Fiber grating dispersion compensator,” OFC (Optical Society of America, Washington, D.C., 1999) 4, 11–13.

Segura, A.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[Crossref]

Shum, P.

Strasser, T. A.

B. J. Eggleton, J. A. Rogers, P. S. Westbook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensation fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854–856 (1999).
[Crossref]

Swanton, A.

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, “1.3 m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett. 32, 1807–1809 (1996).
[Crossref]

Tam, H.-Y.

X. Dong, B.-O. Guan, S. Yuan, X. Dong, and H.-Y. Tam, “Strain gradient chirp of fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202, 91–95 (2002).
[Crossref]

Thibault, S.

Tjin, S. C.

Westbook, P. S.

B. J. Eggleton, J. A. Rogers, P. S. Westbook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensation fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854–856 (1999).
[Crossref]

Xu, M. G.

M. M. Ohn, A. t. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill., “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000–2001, (1996).
[Crossref]

Yuan, S.

X. Dong, B.-O. Guan, S. Yuan, X. Dong, and H.-Y. Tam, “Strain gradient chirp of fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202, 91–95 (2002).
[Crossref]

Zheng, R. T.

Electron. Lett. (5)

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, “1.3 m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett. 32, 1807–1809 (1996).
[Crossref]

M. K. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[Crossref]

M.L. Blanc, S. Y. Huang, M. M. Ohn, and R. M. Measures, “Tunable chirping of a fibre Bragg grating using a tapered cantilever bed,” Electron. Lett. 30, 2163–2165 (1994).
[Crossref]

M. M. Ohn, A. t. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill., “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000–2001, (1996).
[Crossref]

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. J. Eggleton, J. A. Rogers, P. S. Westbook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensation fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854–856 (1999).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

X. Dong, B.-O. Guan, S. Yuan, X. Dong, and H.-Y. Tam, “Strain gradient chirp of fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202, 91–95 (2002).
[Crossref]

Opt. Lett. (1)

Other (1)

V. Gusmeroli and D. Scarano, “Fiber grating dispersion compensator,” OFC (Optical Society of America, Washington, D.C., 1999) 4, 11–13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the CFBG-based tunable dispersion compensator.

Fig. 2.
Fig. 2.

Comparison of curvature distribution and Bragg wavelength variation between methods presented in this paper (blue lines) and in Ref. 10 (red lines).

Fig. 3.
Fig. 3.

Reflection spectra of the tunable dispersion compensator measured under different adjustment.

Fig. 4.
Fig. 4.

Relationship between 3-dB reflection bandwidth and displacement at the free end of the cantilever beam, and the variation in center wavelength.

Fig. 5.
Fig. 5.

Measured time delay for various 3-dB bandwidths of 0.42, 2.05, and 5.04 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ ( x ) = M ( x ) E I ( x ) = 12 L F E h 3 b 0 = 2 f L 2
Δ λ B λ B = C 2 ( 1 p e ) κ l sin ( 2 θ )
Δ λ c = Δ λ B max Δ λ B min = A κ

Metrics