Abstract

We report the curing temperature effect on the performance of polymer-stabilized liquid crystals at λ=1550 nm. The curing temperature in the polymerization process is found to make a significant impact on the light scattering efficiency, hysteresis, operating voltage, and response time. Using a high birefringence liquid crystal mixture, we have improved the device contrast ratio while keeping low operating voltage, and fast response time. Potential applications of such a PSLC for light shutters, variable optical attenuators, and switchable polarizers are emphasized.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. A. M. Hikmet, �??Electrically induced light scattering from anisotropic gels,�?? J. Appl. Phys. 68, 4406-4412 (1990).
    [CrossRef]
  2. R. A. M. Hikmet and H. J. Boots, �??Domain structure and switching behavior of anisotropic gels,�?? Phys. Rev. E 51, 5824-5831 (1995).
    [CrossRef]
  3. H. Ren and S. T. Wu, �??Anisotropic liquid crystal gels for switchable polarizers and displays,�?? Appl. Phys. Lett. 81, 1432-1434 (2002).
    [CrossRef]
  4. K. Hirabayashi, M. Wada and C. Amano, �??Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,�?? IEEE Photon. Technol. Lett. 13, 487-489 (2001).
    [CrossRef]
  5. K. Hirabayashi, M. Wada and C. Amano, �??Liquid crystal variable optical attenuators integrated on planar lightwave circuits,�?? IEEE Photon. Technol. Lett. 13, 609-611, (2001).
    [CrossRef]
  6. F. Du and S. T. Wu, �??Curing Temperature effects on liquid crystal gels�??, Appl. Phys. Lett. 83, 1310-1312 (2003).
    [CrossRef]
  7. I. Dierking, L. L. Kosbar, A. C. Lowe and G. A. Held, �??Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures. I. The influence of curing temperature,�?? Liq. Cryst. 24, 387-395 (1998).
    [CrossRef]
  8. T. Murashige, H. Fujikake,S. Ikehata and F. Sato, �??Relationship of polymer molecular weight and cure temperature in photopolymerization-induced phase separation of liquid crystal and polymer fiber networks,�?? Jpn. J. Appl. Phys. 41, L 1152�??L 1154 (2002).
    [CrossRef]
  9. J. M. Oton, J. M. S. Pena, and A. Serrano, �??Light scattering spectral behavior of liquid crystal dispersions in silica glasses,�?? Appl. Phys. Lett. 66, 929-931 (1995).
    [CrossRef]
  10. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001)
  11. S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan and C. S. Hsu, �??High birefringence and low viscosity liquid crystal mixtures,�?? Soc. Information Display, Tech. Digest 34, 1054-1057 (2003).

Appl. Phys. Lett.

H. Ren and S. T. Wu, �??Anisotropic liquid crystal gels for switchable polarizers and displays,�?? Appl. Phys. Lett. 81, 1432-1434 (2002).
[CrossRef]

F. Du and S. T. Wu, �??Curing Temperature effects on liquid crystal gels�??, Appl. Phys. Lett. 83, 1310-1312 (2003).
[CrossRef]

J. M. Oton, J. M. S. Pena, and A. Serrano, �??Light scattering spectral behavior of liquid crystal dispersions in silica glasses,�?? Appl. Phys. Lett. 66, 929-931 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Hirabayashi, M. Wada and C. Amano, �??Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,�?? IEEE Photon. Technol. Lett. 13, 487-489 (2001).
[CrossRef]

K. Hirabayashi, M. Wada and C. Amano, �??Liquid crystal variable optical attenuators integrated on planar lightwave circuits,�?? IEEE Photon. Technol. Lett. 13, 609-611, (2001).
[CrossRef]

J. Appl. Phys.

R. A. M. Hikmet, �??Electrically induced light scattering from anisotropic gels,�?? J. Appl. Phys. 68, 4406-4412 (1990).
[CrossRef]

Jpn. J. Appl. Phys.

T. Murashige, H. Fujikake,S. Ikehata and F. Sato, �??Relationship of polymer molecular weight and cure temperature in photopolymerization-induced phase separation of liquid crystal and polymer fiber networks,�?? Jpn. J. Appl. Phys. 41, L 1152�??L 1154 (2002).
[CrossRef]

Liq. Cryst.

I. Dierking, L. L. Kosbar, A. C. Lowe and G. A. Held, �??Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures. I. The influence of curing temperature,�?? Liq. Cryst. 24, 387-395 (1998).
[CrossRef]

Phys. Rev. E

R. A. M. Hikmet and H. J. Boots, �??Domain structure and switching behavior of anisotropic gels,�?? Phys. Rev. E 51, 5824-5831 (1995).
[CrossRef]

Soc. Information Display, Tech. Digest

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan and C. S. Hsu, �??High birefringence and low viscosity liquid crystal mixtures,�?? Soc. Information Display, Tech. Digest 34, 1054-1057 (2003).

Other

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The reflective experimental setup for measuring the properties of the E44 PSLC cells

Fig. 2.
Fig. 2.

The curing temperature dependent attenuation of the reflective E44 PSLC cell. Cell gap d=16µm, monomer concentration 4 wt%, laser wavelength λ=1.55µm and measurement temperature T=23 °C.

Fig. 3.
Fig. 3.

Curing temperature dependent (a) hysteresis and (b) response time of the E44 PSLC cell containing 4% monomer concentration. Cell gap d=16 µm. The measurements were taken at λ=1.55µm and T=23°C. The rise (dots) and decay time (open circles) were measured between V=0 and the corresponding driving voltage shown in Fig. 2.

Fig. 4.
Fig. 4.

The voltage-dependent optical attenuation of the reflective 16µm E44-2 PSLC cell containing 4 wt% monomer. Cure temperature T=55°C, operating temperature T=23 °C, and λ=1.55 µm.

Tables (2)

Tables Icon

Table 1. The LC molecular structures, phase transition temperatures and birefringence of the isothiocyanato tolanes used for enhancing E44’s birefringence. K and I represent the crystalline and isotropic phase, respectively. Δn is the extrapolated birefringence at room temperature and λ=633 nm

Tables Icon

Table 2. Comparisons of E44, E44-1 and E44-2 PSLC cells with 4 wt% monomer, 16µm cell gap, laser wavelength λ=1.55 µm, curing temperature T=55 °C, and measured at temperature T=23 °C

Metrics