Abstract

We report the curing temperature effect on the performance of polymer-stabilized liquid crystals at λ=1550 nm. The curing temperature in the polymerization process is found to make a significant impact on the light scattering efficiency, hysteresis, operating voltage, and response time. Using a high birefringence liquid crystal mixture, we have improved the device contrast ratio while keeping low operating voltage, and fast response time. Potential applications of such a PSLC for light shutters, variable optical attenuators, and switchable polarizers are emphasized.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal

Yung-Hsun Wu, Yi-Hsin Lin, Yan-Qing Lu, Hongwen Ren, Yun-Hsing Fan, Janet R. Wu, and Shin-Tson Wu
Opt. Express 12(25) 6382-6389 (2004)

Electro-optical properties of polymer-stabilized blue phase with different monomer combination and concentration

Tatsuro Mizunuma, Thet Naing Oo, Yasutomo Nagano, Hengyi Ma, Yasuhiro Haseba, Hiroki Higuchi, Yasushi Okumura, and Hirotsugu Kikuchi
Opt. Mater. Express 1(8) 1561-1568 (2011)

Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal

Yan-qing Lu, Fang Du, Yi-Hsin Lin, and Shin-Tson Wu
Opt. Express 12(7) 1221-1227 (2004)

References

  • View by:
  • |
  • |
  • |

  1. R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
    [Crossref]
  2. R. A. M. Hikmet and H. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
    [Crossref]
  3. H. Ren and S. T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
    [Crossref]
  4. K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
    [Crossref]
  5. K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609–611, (2001).
    [Crossref]
  6. F. Du and S. T. Wu, “Curing Temperature effects on liquid crystal gels”, Appl. Phys. Lett. 83,1310–1312 (2003)
    [Crossref]
  7. I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures. I. The influence of curing temperature,” Liq. Cryst. 24, 387–395 (1998).
    [Crossref]
  8. T. Murashige, H. Fujikake, S. Ikehata, and F. Sato, “Relationship of polymer molecular weight and cure temperature in photopolymerization-induced phase separation of liquid crystal and polymer fiber networks,” Jpn. J. Appl. Phys. 41, L 1152–L 1154 (2002)
    [Crossref]
  9. J. M. Oton, J. M. S. Pena, and A. Serrano, “Light scattering spectral behavior of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
    [Crossref]
  10. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001)
  11. S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

2003 (2)

F. Du and S. T. Wu, “Curing Temperature effects on liquid crystal gels”, Appl. Phys. Lett. 83,1310–1312 (2003)
[Crossref]

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

2002 (2)

T. Murashige, H. Fujikake, S. Ikehata, and F. Sato, “Relationship of polymer molecular weight and cure temperature in photopolymerization-induced phase separation of liquid crystal and polymer fiber networks,” Jpn. J. Appl. Phys. 41, L 1152–L 1154 (2002)
[Crossref]

H. Ren and S. T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[Crossref]

2001 (2)

K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[Crossref]

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609–611, (2001).
[Crossref]

1998 (1)

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures. I. The influence of curing temperature,” Liq. Cryst. 24, 387–395 (1998).
[Crossref]

1995 (2)

J. M. Oton, J. M. S. Pena, and A. Serrano, “Light scattering spectral behavior of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
[Crossref]

R. A. M. Hikmet and H. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[Crossref]

1990 (1)

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[Crossref]

Amano, C.

K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[Crossref]

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609–611, (2001).
[Crossref]

Boots, H. J.

R. A. M. Hikmet and H. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[Crossref]

Dabrowski, R.

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

Dierking, I.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures. I. The influence of curing temperature,” Liq. Cryst. 24, 387–395 (1998).
[Crossref]

Du, F.

F. Du and S. T. Wu, “Curing Temperature effects on liquid crystal gels”, Appl. Phys. Lett. 83,1310–1312 (2003)
[Crossref]

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

Fujikake, H.

T. Murashige, H. Fujikake, S. Ikehata, and F. Sato, “Relationship of polymer molecular weight and cure temperature in photopolymerization-induced phase separation of liquid crystal and polymer fiber networks,” Jpn. J. Appl. Phys. 41, L 1152–L 1154 (2002)
[Crossref]

Gauza, S.

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

Held, G. A.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures. I. The influence of curing temperature,” Liq. Cryst. 24, 387–395 (1998).
[Crossref]

Hikmet, R. A. M.

R. A. M. Hikmet and H. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[Crossref]

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[Crossref]

Hirabayashi, K.

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609–611, (2001).
[Crossref]

K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[Crossref]

Hsu, C. S.

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

Ikehata, S.

T. Murashige, H. Fujikake, S. Ikehata, and F. Sato, “Relationship of polymer molecular weight and cure temperature in photopolymerization-induced phase separation of liquid crystal and polymer fiber networks,” Jpn. J. Appl. Phys. 41, L 1152–L 1154 (2002)
[Crossref]

Janarthanan, N.

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

Kosbar, L. L.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures. I. The influence of curing temperature,” Liq. Cryst. 24, 387–395 (1998).
[Crossref]

Lowe, A. C.

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures. I. The influence of curing temperature,” Liq. Cryst. 24, 387–395 (1998).
[Crossref]

Murashige, T.

T. Murashige, H. Fujikake, S. Ikehata, and F. Sato, “Relationship of polymer molecular weight and cure temperature in photopolymerization-induced phase separation of liquid crystal and polymer fiber networks,” Jpn. J. Appl. Phys. 41, L 1152–L 1154 (2002)
[Crossref]

Oton, J. M.

J. M. Oton, J. M. S. Pena, and A. Serrano, “Light scattering spectral behavior of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
[Crossref]

Pena, J. M. S.

J. M. Oton, J. M. S. Pena, and A. Serrano, “Light scattering spectral behavior of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
[Crossref]

Ren, H.

H. Ren and S. T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[Crossref]

Sato, F.

T. Murashige, H. Fujikake, S. Ikehata, and F. Sato, “Relationship of polymer molecular weight and cure temperature in photopolymerization-induced phase separation of liquid crystal and polymer fiber networks,” Jpn. J. Appl. Phys. 41, L 1152–L 1154 (2002)
[Crossref]

Serrano, A.

J. M. Oton, J. M. S. Pena, and A. Serrano, “Light scattering spectral behavior of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
[Crossref]

Spadlo, A.

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

Wada, M.

K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[Crossref]

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609–611, (2001).
[Crossref]

Wu, J. R.

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

Wu, S. T.

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

F. Du and S. T. Wu, “Curing Temperature effects on liquid crystal gels”, Appl. Phys. Lett. 83,1310–1312 (2003)
[Crossref]

H. Ren and S. T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[Crossref]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001)

Yang, D. K.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001)

Appl. Phys. Lett. (3)

H. Ren and S. T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[Crossref]

F. Du and S. T. Wu, “Curing Temperature effects on liquid crystal gels”, Appl. Phys. Lett. 83,1310–1312 (2003)
[Crossref]

J. M. Oton, J. M. S. Pena, and A. Serrano, “Light scattering spectral behavior of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (2)

K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[Crossref]

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609–611, (2001).
[Crossref]

J. Appl. Phys. (1)

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Murashige, H. Fujikake, S. Ikehata, and F. Sato, “Relationship of polymer molecular weight and cure temperature in photopolymerization-induced phase separation of liquid crystal and polymer fiber networks,” Jpn. J. Appl. Phys. 41, L 1152–L 1154 (2002)
[Crossref]

Liq. Cryst. (1)

I. Dierking, L. L. Kosbar, A. C. Lowe, and G. A. Held, “Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures. I. The influence of curing temperature,” Liq. Cryst. 24, 387–395 (1998).
[Crossref]

Phys. Rev. E (1)

R. A. M. Hikmet and H. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[Crossref]

Soc. Information Display, Tech. Digest (1)

S. Gauza, F. Du, J. R. Wu, S. T. Wu, A. Spadlo, R. Dabrowski, N. Janarthanan, and C. S. Hsu, “High birefringence and low viscosity liquid crystal mixtures,” Soc. Information Display, Tech. Digest 34, 1054–1057 (2003).

Other (1)

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The reflective experimental setup for measuring the properties of the E44 PSLC cells

Fig. 2.
Fig. 2.

The curing temperature dependent attenuation of the reflective E44 PSLC cell. Cell gap d=16µm, monomer concentration 4 wt%, laser wavelength λ=1.55µm and measurement temperature T=23 °C.

Fig. 3.
Fig. 3.

Curing temperature dependent (a) hysteresis and (b) response time of the E44 PSLC cell containing 4% monomer concentration. Cell gap d=16 µm. The measurements were taken at λ=1.55µm and T=23°C. The rise (dots) and decay time (open circles) were measured between V=0 and the corresponding driving voltage shown in Fig. 2.

Fig. 4.
Fig. 4.

The voltage-dependent optical attenuation of the reflective 16µm E44-2 PSLC cell containing 4 wt% monomer. Cure temperature T=55°C, operating temperature T=23 °C, and λ=1.55 µm.

Tables (2)

Tables Icon

Table 1. The LC molecular structures, phase transition temperatures and birefringence of the isothiocyanato tolanes used for enhancing E44’s birefringence. K and I represent the crystalline and isotropic phase, respectively. Δn is the extrapolated birefringence at room temperature and λ=633 nm

Tables Icon

Table 2. Comparisons of E44, E44-1 and E44-2 PSLC cells with 4 wt% monomer, 16µm cell gap, laser wavelength λ=1.55 µm, curing temperature T=55 °C, and measured at temperature T=23 °C

Metrics