Abstract

We model the non-linear gain characteristics of a Fabry-Perot semiconductor optical amplifier using a modified photon density rate equation. Good agreement is found with experimental results, with the simulation accurately reproducing all the major characteristics of the amplifier. To our knowledge, this is the first calculation using only the rate equations that accurately predicts the gain and nonlinear behavior of FPSOAs.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Wiedenmann, B. Moeller, R. Michalzik, and K.J.Ebeling, �??Performance characteristics of vertical-cavity semiconductor laser amplifiers,�?? Electron. Lett. 32, 342-343 (1996)
    [CrossRef]
  2. C. Tombing, T. Saitoh and T. Mukai, �??Performance prediction for vertical-cavity semiconductor laser amplifiers,�?? IEEE J. Quantum Electron. 30, 2491-2499 (1994)
    [CrossRef]
  3. J. Piprek, S. Bjorlin and E. Bowers, �??Design and analysis of vertical-cavity semiconductor optical amplifiers,�?? IEEE J. Quantum Electron. 37, 127-134 (2001)
    [CrossRef]
  4. Daniel T. Cassidy, �?? Comparison of rate equation and Fabry-Perot approaches to modeling a diode laser�?? Appl. Opt. 22, 3321-3326 (1983)
    [CrossRef] [PubMed]
  5. Adams, M.J., Collins, J.V., and Henning, I.D., �??Analysis of semiconductor laser optical amplifiers�??, IEE Proc. J Optoelectron. 132, 58-63, (1985).
    [CrossRef]
  6. G. P. Agrawal and N. K. Dutta, Semiconductor lasers, (Kluwer Academic, 1993)
  7. M.J. Adams, �??Time Dependent Analysis of Active and Passive Optical Bistability in Semiconductors�??, IEE Proceedings J Optoelectron. 132, 343-348, (1985).
    [CrossRef]
  8. P. Wen, M. Sánchez, M. Gross, O. Kibar, S. Esener, �??New photon density rate equation for Fabry-Perot semiconductor optical amplifiers (FP SOAs),�?? in Physics and Simulation of Optoelectronic Devices X, Proc. SPIE 4646, 243-250, (2002)
    [CrossRef]
  9. Royo, P; Koda, R; Coldren, L.A., �??Vertical cavity semiconductor optical amplifiers: comparison of Fabry- Perot and rate equation approaches.�??, IEEE J. Quantum Electron. 38, 279-84, (2002).
    [CrossRef]
  10. M. Sánchez, P. Wen, M. Gross, S. Esener, �??Nonlinear gain in vertical-cavity semiconductor optical amplifiers.�?? IEEE Phot. Tech. Lett. 15, 507-9, (2003).
    [CrossRef]
  11. P. Wen, M. Sánchez, M. Gross, S. Esener, �??Vertical-cavity optical AND gate�??, Opt. Commun. 219, 383-387, (2003)
    [CrossRef]
  12. T.E. Sale, Vertical Cavity Surface Emitting Lasers, (Research Studies Press, Somerset, England, 1995)
  13. Coldren, L, Corzine, S., Diode Lasers and Photonic Integrated Circuits, (Wiley-Interscience, New York, NY, 1995
  14. Shin, J.H., Hwang, J.K, Ha, H, Lee, Y.H., �??Anamalous above-threshold spontaneous emission in gain-guided vertical-cavity surface-emitting lasers�??, Appl. Phys. Lett. 68, 2180-2182, (1996)
    [CrossRef]
  15. Ha, KH, Lee, YH, �??Determiniation of Cavity Loss in Proton Implanted Vertical-Cavity Surface Emitting Lasers,�?? Jpn. J. Appl. Phys. 37, L372-L374, (1998)
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Shin, J.H., Hwang, J.K, Ha, H, Lee, Y.H., �??Anamalous above-threshold spontaneous emission in gain-guided vertical-cavity surface-emitting lasers�??, Appl. Phys. Lett. 68, 2180-2182, (1996)
[CrossRef]

Electron. Lett.

D. Wiedenmann, B. Moeller, R. Michalzik, and K.J.Ebeling, �??Performance characteristics of vertical-cavity semiconductor laser amplifiers,�?? Electron. Lett. 32, 342-343 (1996)
[CrossRef]

IEE Proc. J Optoelectron.

Adams, M.J., Collins, J.V., and Henning, I.D., �??Analysis of semiconductor laser optical amplifiers�??, IEE Proc. J Optoelectron. 132, 58-63, (1985).
[CrossRef]

IEE Proceedings J Optoelectron.

M.J. Adams, �??Time Dependent Analysis of Active and Passive Optical Bistability in Semiconductors�??, IEE Proceedings J Optoelectron. 132, 343-348, (1985).
[CrossRef]

IEEE J. Quantum Electron.

Royo, P; Koda, R; Coldren, L.A., �??Vertical cavity semiconductor optical amplifiers: comparison of Fabry- Perot and rate equation approaches.�??, IEEE J. Quantum Electron. 38, 279-84, (2002).
[CrossRef]

C. Tombing, T. Saitoh and T. Mukai, �??Performance prediction for vertical-cavity semiconductor laser amplifiers,�?? IEEE J. Quantum Electron. 30, 2491-2499 (1994)
[CrossRef]

J. Piprek, S. Bjorlin and E. Bowers, �??Design and analysis of vertical-cavity semiconductor optical amplifiers,�?? IEEE J. Quantum Electron. 37, 127-134 (2001)
[CrossRef]

IEEE Phot. Tech. Lett.

M. Sánchez, P. Wen, M. Gross, S. Esener, �??Nonlinear gain in vertical-cavity semiconductor optical amplifiers.�?? IEEE Phot. Tech. Lett. 15, 507-9, (2003).
[CrossRef]

Jpn. J. Appl. Phys.

Ha, KH, Lee, YH, �??Determiniation of Cavity Loss in Proton Implanted Vertical-Cavity Surface Emitting Lasers,�?? Jpn. J. Appl. Phys. 37, L372-L374, (1998)
[CrossRef]

Opt. Commun.

P. Wen, M. Sánchez, M. Gross, S. Esener, �??Vertical-cavity optical AND gate�??, Opt. Commun. 219, 383-387, (2003)
[CrossRef]

Proc. SPIE

P. Wen, M. Sánchez, M. Gross, O. Kibar, S. Esener, �??New photon density rate equation for Fabry-Perot semiconductor optical amplifiers (FP SOAs),�?? in Physics and Simulation of Optoelectronic Devices X, Proc. SPIE 4646, 243-250, (2002)
[CrossRef]

Other

G. P. Agrawal and N. K. Dutta, Semiconductor lasers, (Kluwer Academic, 1993)

T.E. Sale, Vertical Cavity Surface Emitting Lasers, (Research Studies Press, Somerset, England, 1995)

Coldren, L, Corzine, S., Diode Lasers and Photonic Integrated Circuits, (Wiley-Interscience, New York, NY, 1995

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

General schematic of VCSOA, showing the transverse (left) and longitudinal (right) optical intensity profile.

Fig. 2.
Fig. 2.

L-I curve. Dots are measured data, solid line is calculation

Fig. 3.
Fig. 3.

Gain vs. detuning for several input powers. Calculated result on the left, measured data on the right.

Fig. 4.
Fig. 4.

Output vs. input power for several detunings at 5.8mA bias. Symbols are measured data, solid lines are calculated. Detunings are (mrad): a) 0.5, b) 0.05, c) -0.4, d) -0.78

Fig. 5.
Fig. 5.

Output vs. input power for several detunings at 5.6mA bias. Symbols are measured data, solid lines are calculated. Detunings are (mrad): a) 0.6, b) 0.1, c) -0.35, d) -0.65

Tables (1)

Tables Icon

Table 1: Rate equation parameters for VCSOA

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d N e dt = η e I q γ e N e G N p , d N p dt = ( G γ p ) N P + R sp + C p N inj
γ e = 1 τ e = A + Bn + C n 2
G = Γ v g g , g = a ( n n 0 ) , v g = c μ g
γ p = 1 τ p = v g ( α m + α i ) , α m = ( 1 2 L ) ln [ 1 R 1 R 2 ]
R sp = β sp Bn N e = β sp B n 2 V , V = Γ l V
C p N inj = η in ( 1 + G s ) ( 1 R g Cos 2 ϕ ) + ( R 2 G 2 kL ) ( 1 R g ) Sin ( 2 ϕ ) ( 1 R g ) 2 + 4 R g Sin 2 ϕ × ( 1 R 1 ) τ RT N inj ,
R g = R 1 R 2 G s
G s = e ( Γ Γ l gL α i L ) , ϕ = ϕ 0 ( β c 2 ) Γ Γ l La ( n n 1 )

Metrics