Abstract

In this paper, the procedure to optimize flat-top Arrayed Waveguide Grating (AWG) devices in terms of transmission and dispersion properties is presented. The systematic procedure consists on the stigmatization and minimization of the Light Path Function (LPF) used in classic planar spectrograph theory. The resulting geometry arrangement for the Arrayed Waveguides (AW) and the Output Waveguides (OW) is not the classical Rowland mounting, but an arbitrary geometry arrangement. Simulation using previous published enhanced modeling show how this geometry reduces the passband ripple, asymmetry and dispersion, in a design example.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M.K. Smit, C. van Dam, �??PHASAR-Based WDM-Devices: Principles, Design and Applications,�?? J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
    [CrossRef]
  2. H. Takenouchi, H. Tsuda and T. Kurokawa, �??Analysis of optical-signal processing using an arrayed-waveguide grating,�?? Opt. Express 6 124-135 (2000), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-6-124">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-6-124</a>.
    [CrossRef] [PubMed]
  3. Y. Yoshikuni, �??Semiconductor Arrayed Waveguide Gratings for Photonic Integrated Devices,�?? J. Sel. Top. Quantum Electron. 8, 1102-1114 (2002).
    [CrossRef]
  4. H. Takahashi, S. Suzuki, I. Nishi, �??Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,�?? J. Lightwave Technol. 12, 989-995 (1994).
    [CrossRef]
  5. H. Takahashi, H. Toba, Y. Inoue, �??Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer,�?? Electron. Lett. 30, 44-45 (1994).
    [CrossRef]
  6. D. Huang, T. Chin, Y. Lai, �??Arrayed waveguide grating DWDM interleaver,�?? Proc. OFC, 3 WDD80 1-3 (2001).
  7. H. Takahashi, K. Oda, H. Toba, Y. Inoue, �??Transmission characteristics of arrayed waveguide N x N wavelength multiplexer,�?? J. Lightwave Technol. 13 447-455 (1995).
    [CrossRef]
  8. C. Dragone, �??Efficient N x N star couplers using Fourier Optics,�?? J. Lightwave Technol. 7, 479-489 (1989).
    [CrossRef]
  9. R. März, Integrated optics: design & modeling, (Artech House, 1995), Chap. 8.
  10. B. Soole e.a., �??Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,�?? Phot. Tech. Lett. 8, 1340-1342 (1996).
    [CrossRef]
  11. L.B. Soldano, E.C.M. Pennings, �??Optical multi-mode interference devices based on self-imaging: principles and applications,�?? J. Lightwave Technol. 13, 615-627 (1995).
    [CrossRef]
  12. K. Okamoto, A. Sugita, �??Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,�?? Electron. Lett. 32, 1661-1662 (1996).
    [CrossRef]
  13. D. Wang, G. Jin, Y. Yan and M. Wu, �??Aberration theory of arrayed waveguide grating,�?? J. Lightwave Technol. 19, 279-284 (2001).
    [CrossRef]
  14. P. Muñoz, D. Pastor, J. Capmany, �??Modeling and design of arrayed waveguide gratings,�?? J. Lightwave Technol. 20, 661-674 (2002).
    [CrossRef]
  15. P. Muñoz, D. Pastor, J. Capmany, �??Analysis and design of arrayed waveguide gratings with MMI couplers,�?? Opt. Express 9, 328-338 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-328">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-328</a>.
    [CrossRef]
  16. ITU-T G.692 Rec. �??Optical interfaces for multichannel systems with optical amplifiers,�?? (1998).
  17. M. Hammer, �??WMM mode solver. Numerical simulation of rectangular integrated optical waveguides,�?? University of Twente, Faculty of Mathematical Sciences. <a href= "http://www.physik.uni-osnabrueck.de/theophys">http://www.physik.uni-osnabrueck.de/theophys</a>.
  18. C.D. Lee e.a., �??The role of photomask resolution on the performance of arrayed-waveguide grating devices,�?? J. Lightwave Technol. 19, 1726-1733 (2001).
    [CrossRef]
  19. P. Muñoz, D. Pastor, J. Capmany, S. Sales, �??Analytical and Numerical Analysis of Phase and Amplitude Errors in the Performance of Arrayed Waveguide Gratings,�?? J. Sel. Top. Quantum Electron. 8, 1130-1141 (2002).
    [CrossRef]
  20. J.W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, 1994), Chaps. 4 and 5.

Electron. Lett.

H. Takahashi, H. Toba, Y. Inoue, �??Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer,�?? Electron. Lett. 30, 44-45 (1994).
[CrossRef]

K. Okamoto, A. Sugita, �??Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,�?? Electron. Lett. 32, 1661-1662 (1996).
[CrossRef]

J. Lightwave Technol.

H. Takahashi, S. Suzuki, I. Nishi, �??Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,�?? J. Lightwave Technol. 12, 989-995 (1994).
[CrossRef]

H. Takahashi, K. Oda, H. Toba, Y. Inoue, �??Transmission characteristics of arrayed waveguide N x N wavelength multiplexer,�?? J. Lightwave Technol. 13 447-455 (1995).
[CrossRef]

C. Dragone, �??Efficient N x N star couplers using Fourier Optics,�?? J. Lightwave Technol. 7, 479-489 (1989).
[CrossRef]

L.B. Soldano, E.C.M. Pennings, �??Optical multi-mode interference devices based on self-imaging: principles and applications,�?? J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

D. Wang, G. Jin, Y. Yan and M. Wu, �??Aberration theory of arrayed waveguide grating,�?? J. Lightwave Technol. 19, 279-284 (2001).
[CrossRef]

C.D. Lee e.a., �??The role of photomask resolution on the performance of arrayed-waveguide grating devices,�?? J. Lightwave Technol. 19, 1726-1733 (2001).
[CrossRef]

P. Muñoz, D. Pastor, J. Capmany, �??Modeling and design of arrayed waveguide gratings,�?? J. Lightwave Technol. 20, 661-674 (2002).
[CrossRef]

J. Sel. Top. Quantum Electron.

Y. Yoshikuni, �??Semiconductor Arrayed Waveguide Gratings for Photonic Integrated Devices,�?? J. Sel. Top. Quantum Electron. 8, 1102-1114 (2002).
[CrossRef]

M.K. Smit, C. van Dam, �??PHASAR-Based WDM-Devices: Principles, Design and Applications,�?? J. Sel. Top. Quantum Electron. 2, 236-250 (1996).
[CrossRef]

P. Muñoz, D. Pastor, J. Capmany, S. Sales, �??Analytical and Numerical Analysis of Phase and Amplitude Errors in the Performance of Arrayed Waveguide Gratings,�?? J. Sel. Top. Quantum Electron. 8, 1130-1141 (2002).
[CrossRef]

OFC 2001

D. Huang, T. Chin, Y. Lai, �??Arrayed waveguide grating DWDM interleaver,�?? Proc. OFC, 3 WDD80 1-3 (2001).

Opt. Express

Phot. Tech. Lett.

B. Soole e.a., �??Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,�?? Phot. Tech. Lett. 8, 1340-1342 (1996).
[CrossRef]

Other

R. März, Integrated optics: design & modeling, (Artech House, 1995), Chap. 8.

J.W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, 1994), Chaps. 4 and 5.

ITU-T G.692 Rec. �??Optical interfaces for multichannel systems with optical amplifiers,�?? (1998).

M. Hammer, �??WMM mode solver. Numerical simulation of rectangular integrated optical waveguides,�?? University of Twente, Faculty of Mathematical Sciences. <a href= "http://www.physik.uni-osnabrueck.de/theophys">http://www.physik.uni-osnabrueck.de/theophys</a>.

Supplementary Material (4)

» Media 1: GIF (1087 KB)     
» Media 2: GIF (1115 KB)     
» Media 3: GIF (1129 KB)     
» Media 4: GIF (1135 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Light path function definition.

Fig. 2.
Fig. 2.

(Movie 1.1 MB) Grating line side geometry, Rowland circle (red) and AW layout (green squares) -upper plot-, x displacement -center plot- and z displacement -lower plot-from the ideal grating line.

Fig. 3.
Fig. 3.

(Movie 1.1 MB) Focal line side geometry, Rowland mounting (red), OW poisitions (blue circles) and stigmatic points positions (green triangles).

Fig. 4.
Fig. 4.

(Movies 1.2 MB) Tranmssion [dB] and dispersion [ps/nm] for the optimized geometry (blue) and Rowland mounting based (red) AWG. [Media 4]

Fig. 5.
Fig. 5.

Bandwidth [nm] evolution (left) and percent reduction (right) along the optimization steps, for 0.5 dB, 1 dB, 3 dB and 20 dB bandwidth values

Fig. 6.
Fig. 6.

Ripple (left) and asymmetry (right) evolution, both in [dB], along the optimization steps.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F ( x ) n s ( λ ) ( I P I ¯ I O I ¯ ) + n c ( λ ) ( P I P O I O ) + n s ( λ ) ( PD ¯ OD ¯ ) G ( x )
F ( x ) n s ( λ ) F i ( x ) + n c ( λ ) Δ L ( x ) + n s ( λ ) F d ( x ) G ( x )
F ( x ) n s ( λ ) F i ( x , z G ( x ) ) + n c ( λ ) Δ L ( x ) + n s ( λ ) F d ( x , z G ( x ) ) G ( x )
n s ( λ 1 ) F i ( x , z G ( x ) ) + n c ( λ 1 ) Δ L ( x ) + n s ( λ 1 ) F d , 1 ( x , z G ( x ) ) m λ 1 G ( x ) = 0
n s ( λ 2 ) F i ( x , z G ( x ) ) + n c ( λ 2 ) Δ L ( x ) + n s ( λ 2 ) F d , 2 ( x , z G ( x ) ) m λ 2 G ( x ) = 0
x 0 = G ( x ) d w
z G ( x 0 ) = R 2 R 2 x 0 2
Δ L ( x 0 ) = m λ 0 n c G ( x )
n s ( λ k ) F i ( x , z G ( x ) ) + n c ( λ k ) Δ L ( x ) + n s ( λ k ) F d , k ( x , z G ( x ) ) m λ k G ( x ) = 0

Metrics