Abstract

We report on polymer liquid crystals with periodically oriented mesogenic side chains and demonstrate that the resulting two-dimensional polarization gratings multiplex-diffract the laser beam and convert the polarization state at the same time. Two-dimensional diffraction patterns with various kinds of polarization states can be successfully generated by designing a combination of one-dimensional polarization gratings. This study is a considerable advance towards the realization of highly functionalized passive optical devices that can control both the beam propagation direction and the polarization state.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-sensitive diffraction in vector gratings combined with form birefringence in subwavelength-periodic structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers

Hiroshi Ono, Masaya Nishi, Tomoyuki Sasaki, Kohei Noda, Makoto Okada, Shinji Matsui, and Nobuhiro Kawatsuki
J. Opt. Soc. Am. B 31(1) 11-19 (2014)

Fabrication of twisted nematic structure and vector grating cells by one-step exposure on photocrosslinkable polymer liquid crystals

Mitsuru Kuzuwata, Tomoyuki Sasaki, Nobuhiro Kawatsuki, and Hiroshi Ono
Opt. Lett. 37(6) 1115-1117 (2012)

Multilevel anisotropic diffractive optical elements fabricated by means of stepping photo-alignment technique using photo-cross-linkable polymer liquid crystals

Kohei Noda, Kotaro Kawai, Tomoyuki Sasaki, Nobuhiro Kawatsuki, and Hiroshi Ono
Appl. Opt. 53(12) 2556-2561 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995).
    [Crossref] [PubMed]
  2. G. Iftime, F. L. Labarthet, A. Nathansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122, 12646–12650 (2000).
    [Crossref]
  3. S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,” Macromolecules 35, 8751–8758 (2002).
    [Crossref]
  4. V. Shibaev, A. Bobrovsky, and N. Boiko, “Light-responsive chiral photochromic liquid crystalline polymer systems,” J. Photochemistry and Photobiology A: Chemistry 155, 3–19 (2003).
    [Crossref]
  5. N. Kawatsuki, K. Matsuyoshi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet irradiation and thermal treatment,” Macromolecules 33, 1698–1702 (2000).
    [Crossref]
  6. N. Kawatsuki, M. Hayashi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet light irradiation and annealing: effect of heating rate,” Macromol. Chem. Phys. 202, 3087 (2001).
    [Crossref]
  7. N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystals,” Macromolecules 35, 706–713 (2002).
    [Crossref]
  8. T. D. Ebralidze, “Model of an anisotropic diffraction grating,” Opt. Spektrosk. 53, 944–946 (1982).
  9. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Optica Acta 31, 579–588 (1984).
    [Crossref]
  10. L. Nikolova, K. Stoyanova, and T. Todorov, “Polarization wavefront conjugation by means of transient holograms in rigid dye solutions,” Opt. Commun. 64, 75–80 (1987).
    [Crossref]
  11. C. Solano, R. A. Lessard, and P. C. Roberge, “Methylene blue-sensitized gelatin as a photosensitive medium for conventional and polarization holography,” Appl. Opt. 26, 1989–1997 (1987).
    [Crossref] [PubMed]
  12. P. Rochon, J. Gosselin, A. Nathansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
    [Crossref]
  13. T. D. Ebralidze and N. A. Ebralidze, “Hologram recording by means of film anisotropy photoinduction,” Appl. Opt. 31, 4720–4724 (1992).
    [Crossref] [PubMed]
  14. T. D. Ebralidze, “Weigert hologram,” Appl. Opt. 34, 1357–1362 (1995).
    [Crossref] [PubMed]
  15. H. Akiyama, K. Kudo, and K. Ichimura, “Novel polymethacrylate with latrerally attached azobenzene groups displaying photoinduced optical anisotropy,” Macromol. Rapid. Commun. 16, 35–41 (1995).
    [Crossref]
  16. L. Nikolova, M. Todorov, M. Ivanov, F. Andruzzi, S. Hvisted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
    [Crossref] [PubMed]
  17. I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
    [Crossref]
  18. F. L. Labarthet, T. Buffeteau, and C. Sourisseau, “Analysis of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
    [Crossref]
  19. T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, “Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals,” J. Phys. Chem. B 103, 9873–9878 (1999).
    [Crossref]
  20. M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura, and J. Stumpe, “Thermal amplification of photo-induced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,” Appl. Phys. Lett. 76, 1377–1379 (2000).
    [Crossref]
  21. G. Cipparrone, A. Mazzulla, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films for polarimetric applications,” J. Opt. Soc. Am. B 19, 1157–1161 (2002).
    [Crossref]
  22. A. Gerrard and J. M. Burch, Introduction to Matrix Method in Optics. 179–262 (Dover Publications, Inc. New York, 1994).
  23. H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, “Self-organized phase gratings in photoreactive polymer liquid crystals,” Appl. Phys. Lett. 82, 1359–1361 (2003).
    [Crossref]
  24. N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991–994 (2003).
    [Crossref]
  25. H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photo-cross-linkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
    [Crossref]

2003 (4)

V. Shibaev, A. Bobrovsky, and N. Boiko, “Light-responsive chiral photochromic liquid crystalline polymer systems,” J. Photochemistry and Photobiology A: Chemistry 155, 3–19 (2003).
[Crossref]

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, “Self-organized phase gratings in photoreactive polymer liquid crystals,” Appl. Phys. Lett. 82, 1359–1361 (2003).
[Crossref]

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991–994 (2003).
[Crossref]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photo-cross-linkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[Crossref]

2002 (3)

G. Cipparrone, A. Mazzulla, and L. M. Blinov, “Permanent polarization gratings in photosensitive Langmuir-Blodgett films for polarimetric applications,” J. Opt. Soc. Am. B 19, 1157–1161 (2002).
[Crossref]

S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,” Macromolecules 35, 8751–8758 (2002).
[Crossref]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystals,” Macromolecules 35, 706–713 (2002).
[Crossref]

2001 (1)

N. Kawatsuki, M. Hayashi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet light irradiation and annealing: effect of heating rate,” Macromol. Chem. Phys. 202, 3087 (2001).
[Crossref]

2000 (3)

N. Kawatsuki, K. Matsuyoshi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet irradiation and thermal treatment,” Macromolecules 33, 1698–1702 (2000).
[Crossref]

G. Iftime, F. L. Labarthet, A. Nathansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122, 12646–12650 (2000).
[Crossref]

M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura, and J. Stumpe, “Thermal amplification of photo-induced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,” Appl. Phys. Lett. 76, 1377–1379 (2000).
[Crossref]

1999 (1)

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, “Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals,” J. Phys. Chem. B 103, 9873–9878 (1999).
[Crossref]

1998 (1)

F. L. Labarthet, T. Buffeteau, and C. Sourisseau, “Analysis of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
[Crossref]

1997 (1)

I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[Crossref]

1996 (1)

1995 (3)

T. D. Ebralidze, “Weigert hologram,” Appl. Opt. 34, 1357–1362 (1995).
[Crossref] [PubMed]

H. Akiyama, K. Kudo, and K. Ichimura, “Novel polymethacrylate with latrerally attached azobenzene groups displaying photoinduced optical anisotropy,” Macromol. Rapid. Commun. 16, 35–41 (1995).
[Crossref]

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995).
[Crossref] [PubMed]

1992 (2)

P. Rochon, J. Gosselin, A. Nathansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[Crossref]

T. D. Ebralidze and N. A. Ebralidze, “Hologram recording by means of film anisotropy photoinduction,” Appl. Opt. 31, 4720–4724 (1992).
[Crossref] [PubMed]

1987 (2)

L. Nikolova, K. Stoyanova, and T. Todorov, “Polarization wavefront conjugation by means of transient holograms in rigid dye solutions,” Opt. Commun. 64, 75–80 (1987).
[Crossref]

C. Solano, R. A. Lessard, and P. C. Roberge, “Methylene blue-sensitized gelatin as a photosensitive medium for conventional and polarization holography,” Appl. Opt. 26, 1989–1997 (1987).
[Crossref] [PubMed]

1984 (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Optica Acta 31, 579–588 (1984).
[Crossref]

1982 (1)

T. D. Ebralidze, “Model of an anisotropic diffraction grating,” Opt. Spektrosk. 53, 944–946 (1982).

Akiyama, H.

H. Akiyama, K. Kudo, and K. Ichimura, “Novel polymethacrylate with latrerally attached azobenzene groups displaying photoinduced optical anisotropy,” Macromol. Rapid. Commun. 16, 35–41 (1995).
[Crossref]

Andruzzi, F.

I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[Crossref]

L. Nikolova, M. Todorov, M. Ivanov, F. Andruzzi, S. Hvisted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[Crossref] [PubMed]

Blinov, L. M.

Bobrovsky, A.

V. Shibaev, A. Bobrovsky, and N. Boiko, “Light-responsive chiral photochromic liquid crystalline polymer systems,” J. Photochemistry and Photobiology A: Chemistry 155, 3–19 (2003).
[Crossref]

Boiko, N.

V. Shibaev, A. Bobrovsky, and N. Boiko, “Light-responsive chiral photochromic liquid crystalline polymer systems,” J. Photochemistry and Photobiology A: Chemistry 155, 3–19 (2003).
[Crossref]

Buffeteau, T.

F. L. Labarthet, T. Buffeteau, and C. Sourisseau, “Analysis of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
[Crossref]

Burch, J. M.

A. Gerrard and J. M. Burch, Introduction to Matrix Method in Optics. 179–262 (Dover Publications, Inc. New York, 1994).

Cipparrone, G.

Ebralidze, N. A.

Ebralidze, T. D.

Emoto, A.

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, “Self-organized phase gratings in photoreactive polymer liquid crystals,” Appl. Phys. Lett. 82, 1359–1361 (2003).
[Crossref]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photo-cross-linkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[Crossref]

Fujiwara, T.

M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura, and J. Stumpe, “Thermal amplification of photo-induced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,” Appl. Phys. Lett. 76, 1377–1379 (2000).
[Crossref]

Gerrard, A.

A. Gerrard and J. M. Burch, Introduction to Matrix Method in Optics. 179–262 (Dover Publications, Inc. New York, 1994).

Gosselin, J.

P. Rochon, J. Gosselin, A. Nathansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[Crossref]

Goto, K.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystals,” Macromolecules 35, 706–713 (2002).
[Crossref]

Hasegawa, M.

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, “Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals,” J. Phys. Chem. B 103, 9873–9878 (1999).
[Crossref]

Hasegawa, T.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photo-cross-linkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[Crossref]

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, “Self-organized phase gratings in photoreactive polymer liquid crystals,” Appl. Phys. Lett. 82, 1359–1361 (2003).
[Crossref]

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991–994 (2003).
[Crossref]

Hayashi, M.

N. Kawatsuki, M. Hayashi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet light irradiation and annealing: effect of heating rate,” Macromol. Chem. Phys. 202, 3087 (2001).
[Crossref]

Hvilsted, S.

I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[Crossref]

Hvisted, S.

Ichimura, K.

M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura, and J. Stumpe, “Thermal amplification of photo-induced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,” Appl. Phys. Lett. 76, 1377–1379 (2000).
[Crossref]

H. Akiyama, K. Kudo, and K. Ichimura, “Novel polymethacrylate with latrerally attached azobenzene groups displaying photoinduced optical anisotropy,” Macromol. Rapid. Commun. 16, 35–41 (1995).
[Crossref]

Iftime, G.

G. Iftime, F. L. Labarthet, A. Nathansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122, 12646–12650 (2000).
[Crossref]

Ikeda, T.

S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,” Macromolecules 35, 8751–8758 (2002).
[Crossref]

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, “Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals,” J. Phys. Chem. B 103, 9873–9878 (1999).
[Crossref]

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995).
[Crossref] [PubMed]

Ivanov, M.

Kanazawa, A.

S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,” Macromolecules 35, 8751–8758 (2002).
[Crossref]

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, “Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals,” J. Phys. Chem. B 103, 9873–9878 (1999).
[Crossref]

Kawakami, T.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystals,” Macromolecules 35, 706–713 (2002).
[Crossref]

Kawatsuki, N.

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, “Self-organized phase gratings in photoreactive polymer liquid crystals,” Appl. Phys. Lett. 82, 1359–1361 (2003).
[Crossref]

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991–994 (2003).
[Crossref]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photo-cross-linkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[Crossref]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystals,” Macromolecules 35, 706–713 (2002).
[Crossref]

N. Kawatsuki, M. Hayashi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet light irradiation and annealing: effect of heating rate,” Macromol. Chem. Phys. 202, 3087 (2001).
[Crossref]

N. Kawatsuki, K. Matsuyoshi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet irradiation and thermal treatment,” Macromolecules 33, 1698–1702 (2000).
[Crossref]

Kidowaki, M.

M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura, and J. Stumpe, “Thermal amplification of photo-induced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,” Appl. Phys. Lett. 76, 1377–1379 (2000).
[Crossref]

Kudo, K.

H. Akiyama, K. Kudo, and K. Ichimura, “Novel polymethacrylate with latrerally attached azobenzene groups displaying photoinduced optical anisotropy,” Macromol. Rapid. Commun. 16, 35–41 (1995).
[Crossref]

Labarthet, F. L.

G. Iftime, F. L. Labarthet, A. Nathansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122, 12646–12650 (2000).
[Crossref]

F. L. Labarthet, T. Buffeteau, and C. Sourisseau, “Analysis of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
[Crossref]

Lessard, R. A.

Matsuyoshi, K.

N. Kawatsuki, K. Matsuyoshi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet irradiation and thermal treatment,” Macromolecules 33, 1698–1702 (2000).
[Crossref]

Mazzulla, A.

Morino, S.

M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura, and J. Stumpe, “Thermal amplification of photo-induced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,” Appl. Phys. Lett. 76, 1377–1379 (2000).
[Crossref]

Nathansohn, A.

G. Iftime, F. L. Labarthet, A. Nathansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122, 12646–12650 (2000).
[Crossref]

P. Rochon, J. Gosselin, A. Nathansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[Crossref]

Naydenova, I.

I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[Crossref]

Nikolova, L.

L. Nikolova, M. Todorov, M. Ivanov, F. Andruzzi, S. Hvisted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[Crossref] [PubMed]

L. Nikolova, K. Stoyanova, and T. Todorov, “Polarization wavefront conjugation by means of transient holograms in rigid dye solutions,” Opt. Commun. 64, 75–80 (1987).
[Crossref]

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Optica Acta 31, 579–588 (1984).
[Crossref]

Nikolova, T.

I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[Crossref]

Ono, H.

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991–994 (2003).
[Crossref]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photo-cross-linkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[Crossref]

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, “Self-organized phase gratings in photoreactive polymer liquid crystals,” Appl. Phys. Lett. 82, 1359–1361 (2003).
[Crossref]

Ramanujam, P. S.

I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[Crossref]

L. Nikolova, M. Todorov, M. Ivanov, F. Andruzzi, S. Hvisted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[Crossref] [PubMed]

Roberge, P. C.

Rochon, P.

G. Iftime, F. L. Labarthet, A. Nathansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122, 12646–12650 (2000).
[Crossref]

P. Rochon, J. Gosselin, A. Nathansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[Crossref]

Shibaev, V.

V. Shibaev, A. Bobrovsky, and N. Boiko, “Light-responsive chiral photochromic liquid crystalline polymer systems,” J. Photochemistry and Photobiology A: Chemistry 155, 3–19 (2003).
[Crossref]

Shiono, T.

S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,” Macromolecules 35, 8751–8758 (2002).
[Crossref]

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, “Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals,” J. Phys. Chem. B 103, 9873–9878 (1999).
[Crossref]

Solano, C.

Sourisseau, C.

F. L. Labarthet, T. Buffeteau, and C. Sourisseau, “Analysis of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
[Crossref]

Stoyanova, K.

L. Nikolova, K. Stoyanova, and T. Todorov, “Polarization wavefront conjugation by means of transient holograms in rigid dye solutions,” Opt. Commun. 64, 75–80 (1987).
[Crossref]

Stumpe, J.

M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura, and J. Stumpe, “Thermal amplification of photo-induced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,” Appl. Phys. Lett. 76, 1377–1379 (2000).
[Crossref]

Takahashi, F.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photo-cross-linkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[Crossref]

Tamoto, T.

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991–994 (2003).
[Crossref]

Todorov, M.

Todorov, T.

I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[Crossref]

L. Nikolova, K. Stoyanova, and T. Todorov, “Polarization wavefront conjugation by means of transient holograms in rigid dye solutions,” Opt. Commun. 64, 75–80 (1987).
[Crossref]

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Optica Acta 31, 579–588 (1984).
[Crossref]

Tsutsumi, O.

S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,” Macromolecules 35, 8751–8758 (2002).
[Crossref]

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995).
[Crossref] [PubMed]

Xie, S.

P. Rochon, J. Gosselin, A. Nathansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[Crossref]

Yamamoto, T.

S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,” Macromolecules 35, 8751–8758 (2002).
[Crossref]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystals,” Macromolecules 35, 706–713 (2002).
[Crossref]

N. Kawatsuki, M. Hayashi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet light irradiation and annealing: effect of heating rate,” Macromol. Chem. Phys. 202, 3087 (2001).
[Crossref]

N. Kawatsuki, K. Matsuyoshi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet irradiation and thermal treatment,” Macromolecules 33, 1698–1702 (2000).
[Crossref]

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, “Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals,” J. Phys. Chem. B 103, 9873–9878 (1999).
[Crossref]

Yoneyama, S.

S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,” Macromolecules 35, 8751–8758 (2002).
[Crossref]

Adv. Mater. (1)

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991–994 (2003).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

P. Rochon, J. Gosselin, A. Nathansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[Crossref]

M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura, and J. Stumpe, “Thermal amplification of photo-induced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,” Appl. Phys. Lett. 76, 1377–1379 (2000).
[Crossref]

H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, “Self-organized phase gratings in photoreactive polymer liquid crystals,” Appl. Phys. Lett. 82, 1359–1361 (2003).
[Crossref]

J. Am. Chem. Soc. (1)

G. Iftime, F. L. Labarthet, A. Nathansohn, and P. Rochon, “Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,” J. Am. Chem. Soc. 122, 12646–12650 (2000).
[Crossref]

J. Appl. Phys. (1)

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photo-cross-linkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[Crossref]

J. Mod. Opt. (1)

I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarimetric investigation of materials with both linear and circular anisotropy,” J. Mod. Opt. 44, 1643–1650 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Photochemistry and Photobiology A: Chemistry (1)

V. Shibaev, A. Bobrovsky, and N. Boiko, “Light-responsive chiral photochromic liquid crystalline polymer systems,” J. Photochemistry and Photobiology A: Chemistry 155, 3–19 (2003).
[Crossref]

J. Phys. Chem. B (2)

F. L. Labarthet, T. Buffeteau, and C. Sourisseau, “Analysis of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,” J. Phys. Chem. B 102, 2654–2662 (1998).
[Crossref]

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, and T. Ikeda, “Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals,” J. Phys. Chem. B 103, 9873–9878 (1999).
[Crossref]

Macromol. Chem. Phys. (1)

N. Kawatsuki, M. Hayashi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet light irradiation and annealing: effect of heating rate,” Macromol. Chem. Phys. 202, 3087 (2001).
[Crossref]

Macromol. Rapid. Commun. (1)

H. Akiyama, K. Kudo, and K. Ichimura, “Novel polymethacrylate with latrerally attached azobenzene groups displaying photoinduced optical anisotropy,” Macromol. Rapid. Commun. 16, 35–41 (1995).
[Crossref]

Macromolecules (3)

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystals,” Macromolecules 35, 706–713 (2002).
[Crossref]

N. Kawatsuki, K. Matsuyoshi, and T. Yamamoto, “Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet irradiation and thermal treatment,” Macromolecules 33, 1698–1702 (2000).
[Crossref]

S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,” Macromolecules 35, 8751–8758 (2002).
[Crossref]

Opt. Commun. (1)

L. Nikolova, K. Stoyanova, and T. Todorov, “Polarization wavefront conjugation by means of transient holograms in rigid dye solutions,” Opt. Commun. 64, 75–80 (1987).
[Crossref]

Opt. Spektrosk. (1)

T. D. Ebralidze, “Model of an anisotropic diffraction grating,” Opt. Spektrosk. 53, 944–946 (1982).

Optica Acta (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Optica Acta 31, 579–588 (1984).
[Crossref]

Science (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995).
[Crossref] [PubMed]

Other (1)

A. Gerrard and J. M. Burch, Introduction to Matrix Method in Optics. 179–262 (Dover Publications, Inc. New York, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Typical examples of the diffraction patterns passed through one-dimensional gratings. The gratings were written using two orthogonally polarized (OL; orthogonal linear and OC: orthogonal circular), mutually coherent ultraviolet laser beams. In each picture, the polarization states are shown at the top, the diffraction patterns are shown in the middle, and the polar plots are shown at the bottom. (a), Diffraction pattern from the gratings formed by OL exposure. The reading beam is linearly s-polarized. (b), Diffraction pattern from the gratings formed by OC exposure. The reading beam is linearly p-polarized. (c), Diffraction pattern from the gratings formed by OC exposure. The reading beam is right-hand circularly polarized.

Fig. 2.
Fig. 2.

Diffraction patterns passed through the crossed gratings formed by overwriting the same polarization gratings. The grating vectors are slanted with 0, 45, 90, 135 degrees with reference to the horizon. The gratings were written using two orthogonally polarized (OL; orthogonal linear and OC: orthogonal circular), mutually coherent ultraviolet laser beams. In each picture, polarization state of each diffraction spot is schematically presented by an arrow. (a), Diffraction pattern from the crossed gratings consisting of four OL gratings. The reading beam is linearly polarized and the polarization direction is slanted with 40 degrees. (b), Diffraction pattern from the crossed gratings consisting of four OC gratings. The reading beam is linearly s-polarized. (c), Diffraction pattern from the crossed gratings consisting of four OC gratings. The reading beam is right-hand circularly polarized.

Fig. 3.
Fig. 3.

Diffraction patterns passed through the crossed gratings formed by alternately overwriting the orthogonal linear (OL) and orthogonal circular (OC) gratings. The grating vectors are slanted with 0, 45, 90, 135 degrees with reference to the horizon. In each picture, the polarization state of each diffraction spot is schematically presented by an arrow. (a), The reading beam is linearly s-polarized and the polarization direction is slanted with 40 degrees. (b), The reading beam is right-hand circularly polarized.

Tables (2)

Tables Icon

Table 1. Types of polarization modulation in recording with two waves with orthogonal polarization.

Tables Icon

Table 2. Summarize of theoretical calculations for the polarization states of the diffracted beams on varying polarization state of the reading beam.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E = ( E cos δ iE cos δ ) ,
δ = 2 π x Λ .
E = ( E cos δ E sin δ ) .
T = ( e i ( cos δ ) Δ φ 0 0 e i ( cos δ ) Δ φ ) ,
T = ( cos Δ φ + i sin Δ φ cos δ i sin Δ φ sin δ i sin Δ φ sin δ cos Δ φ i sin Δ φ cos δ ) ,
S = T · R ,

Metrics