Abstract

For what is the first time to our knowledge, we study the performance of Gaussian pulse transmission over an ultrahigh polarization-mode-dispersion (PMD) fiber. In the experiment the Gaussian pulse breaks into a series of deformed pulses; this phenomenon is attributed to the walk-off of the deformed pulses caused by ultrahigh PMD. The simulation and transmission experiment were performed with fiber with a PMD coefficient of 237.95 ps/km1/2. The result of the simulation agrees well with that of the experiment.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A.E Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 1298–1311 (1999).
    [CrossRef]
  2. Ning Tigang, Liu Yan, and Tan Zhongwei, et.al. “4×10Gb/s WDM transmission over 640km of standard fiber using cascaded chirped FBG dispersion compensation,” in Fifth Optoelectronics and Communications Conference OECC’2002, Japan (IEEE/LEOS, Piscataway, New Jersey, 2002), pp. 262–263.
  3. H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
    [CrossRef]
  4. C. D. Poole and R. A. Wanger, “Phenomenological approach to polarization dispersion in long single fibers,” Electron. Lett. 22, 1029–1030 (1986).
    [CrossRef]
  5. John Cammeron, Liang Chen, and Xiaoyi Bao. “Impact of chromatic dispersion on the system limitation due to polarization mode dispersion,” IEEE Photon. Technol. Lett. 12, 47–49 (2000)
    [CrossRef]
  6. M. Shtaif; “The Brownian-bridge method for simulating polarization mode dispersion in optical communications systems,” IEEE Photon. Technol. Lett. 15, 51–53 (2003)
    [CrossRef]
  7. P. K. A. Wai and C. R. Menyuk. “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Ligthwave Technol. 14, 148–157 (1996)
    [CrossRef]
  8. D. Marcuse, C.R. Manyuk, and P.K.A. Wai; “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 9, 1735–1746 (1997)
    [CrossRef]
  9. P. K. A. Wai, W. L. Kath, C. R. Menyuk, and J. W. Zhang, “Nonlinear polarization-mode dispersion in optical fibers with randomly varying birefringence,” J. Opt. Soc. Am. B 142967–2979 (1997)
    [CrossRef]

2003 (1)

M. Shtaif; “The Brownian-bridge method for simulating polarization mode dispersion in optical communications systems,” IEEE Photon. Technol. Lett. 15, 51–53 (2003)
[CrossRef]

2000 (2)

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

John Cammeron, Liang Chen, and Xiaoyi Bao. “Impact of chromatic dispersion on the system limitation due to polarization mode dispersion,” IEEE Photon. Technol. Lett. 12, 47–49 (2000)
[CrossRef]

1999 (1)

A.E Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 1298–1311 (1999).
[CrossRef]

1997 (2)

D. Marcuse, C.R. Manyuk, and P.K.A. Wai; “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 9, 1735–1746 (1997)
[CrossRef]

P. K. A. Wai, W. L. Kath, C. R. Menyuk, and J. W. Zhang, “Nonlinear polarization-mode dispersion in optical fibers with randomly varying birefringence,” J. Opt. Soc. Am. B 142967–2979 (1997)
[CrossRef]

1996 (1)

P. K. A. Wai and C. R. Menyuk. “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Ligthwave Technol. 14, 148–157 (1996)
[CrossRef]

1986 (1)

C. D. Poole and R. A. Wanger, “Phenomenological approach to polarization dispersion in long single fibers,” Electron. Lett. 22, 1029–1030 (1986).
[CrossRef]

Agogliata, B.

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

Arcangeli, L.

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

Bao, Xiaoyi

John Cammeron, Liang Chen, and Xiaoyi Bao. “Impact of chromatic dispersion on the system limitation due to polarization mode dispersion,” IEEE Photon. Technol. Lett. 12, 47–49 (2000)
[CrossRef]

Cammeron, John

John Cammeron, Liang Chen, and Xiaoyi Bao. “Impact of chromatic dispersion on the system limitation due to polarization mode dispersion,” IEEE Photon. Technol. Lett. 12, 47–49 (2000)
[CrossRef]

Chen, Liang

John Cammeron, Liang Chen, and Xiaoyi Bao. “Impact of chromatic dispersion on the system limitation due to polarization mode dispersion,” IEEE Photon. Technol. Lett. 12, 47–49 (2000)
[CrossRef]

Eiselt, M.

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

Feng, K.-M.

A.E Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 1298–1311 (1999).
[CrossRef]

Forghieri, F.

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

Garrett, L. D.

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

Gnauck, H.

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

Gusmeroli, V.

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

Kath, W. L.

Lee, S.

A.E Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 1298–1311 (1999).
[CrossRef]

Manyuk, C.R.

D. Marcuse, C.R. Manyuk, and P.K.A. Wai; “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 9, 1735–1746 (1997)
[CrossRef]

Marcuse, D.

D. Marcuse, C.R. Manyuk, and P.K.A. Wai; “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 9, 1735–1746 (1997)
[CrossRef]

Menyuk, C. R.

P. K. A. Wai, W. L. Kath, C. R. Menyuk, and J. W. Zhang, “Nonlinear polarization-mode dispersion in optical fibers with randomly varying birefringence,” J. Opt. Soc. Am. B 142967–2979 (1997)
[CrossRef]

P. K. A. Wai and C. R. Menyuk. “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Ligthwave Technol. 14, 148–157 (1996)
[CrossRef]

Peng, J.

A.E Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 1298–1311 (1999).
[CrossRef]

Poole, C. D.

C. D. Poole and R. A. Wanger, “Phenomenological approach to polarization dispersion in long single fibers,” Electron. Lett. 22, 1029–1030 (1986).
[CrossRef]

Scarano, D.

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

Shtaif, M.

M. Shtaif; “The Brownian-bridge method for simulating polarization mode dispersion in optical communications systems,” IEEE Photon. Technol. Lett. 15, 51–53 (2003)
[CrossRef]

Sun, H.

A.E Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 1298–1311 (1999).
[CrossRef]

Tigang, Ning

Ning Tigang, Liu Yan, and Tan Zhongwei, et.al. “4×10Gb/s WDM transmission over 640km of standard fiber using cascaded chirped FBG dispersion compensation,” in Fifth Optoelectronics and Communications Conference OECC’2002, Japan (IEEE/LEOS, Piscataway, New Jersey, 2002), pp. 262–263.

Wai, P. K. A.

P. K. A. Wai, W. L. Kath, C. R. Menyuk, and J. W. Zhang, “Nonlinear polarization-mode dispersion in optical fibers with randomly varying birefringence,” J. Opt. Soc. Am. B 142967–2979 (1997)
[CrossRef]

P. K. A. Wai and C. R. Menyuk. “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Ligthwave Technol. 14, 148–157 (1996)
[CrossRef]

Wai, P.K.A.

D. Marcuse, C.R. Manyuk, and P.K.A. Wai; “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 9, 1735–1746 (1997)
[CrossRef]

Wanger, R. A.

C. D. Poole and R. A. Wanger, “Phenomenological approach to polarization dispersion in long single fibers,” Electron. Lett. 22, 1029–1030 (1986).
[CrossRef]

Wiesenfeld, J. M.

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

Willner, A.E

A.E Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 1298–1311 (1999).
[CrossRef]

Yan, Liu

Ning Tigang, Liu Yan, and Tan Zhongwei, et.al. “4×10Gb/s WDM transmission over 640km of standard fiber using cascaded chirped FBG dispersion compensation,” in Fifth Optoelectronics and Communications Conference OECC’2002, Japan (IEEE/LEOS, Piscataway, New Jersey, 2002), pp. 262–263.

Zhang, J. W.

Zhongwei, Tan

Ning Tigang, Liu Yan, and Tan Zhongwei, et.al. “4×10Gb/s WDM transmission over 640km of standard fiber using cascaded chirped FBG dispersion compensation,” in Fifth Optoelectronics and Communications Conference OECC’2002, Japan (IEEE/LEOS, Piscataway, New Jersey, 2002), pp. 262–263.

Electron. Lett. (1)

C. D. Poole and R. A. Wanger, “Phenomenological approach to polarization dispersion in long single fibers,” Electron. Lett. 22, 1029–1030 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A.E Willner, K.-M. Feng, S. Lee, J. Peng, and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 1298–1311 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

John Cammeron, Liang Chen, and Xiaoyi Bao. “Impact of chromatic dispersion on the system limitation due to polarization mode dispersion,” IEEE Photon. Technol. Lett. 12, 47–49 (2000)
[CrossRef]

M. Shtaif; “The Brownian-bridge method for simulating polarization mode dispersion in optical communications systems,” IEEE Photon. Technol. Lett. 15, 51–53 (2003)
[CrossRef]

H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, “16×20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12, 437–439 (2000)
[CrossRef]

J. Lightwave Technol. (1)

D. Marcuse, C.R. Manyuk, and P.K.A. Wai; “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 9, 1735–1746 (1997)
[CrossRef]

J. Ligthwave Technol. (1)

P. K. A. Wai and C. R. Menyuk. “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Ligthwave Technol. 14, 148–157 (1996)
[CrossRef]

J. Opt. Soc. Am. B (1)

Other (1)

Ning Tigang, Liu Yan, and Tan Zhongwei, et.al. “4×10Gb/s WDM transmission over 640km of standard fiber using cascaded chirped FBG dispersion compensation,” in Fifth Optoelectronics and Communications Conference OECC’2002, Japan (IEEE/LEOS, Piscataway, New Jersey, 2002), pp. 262–263.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Two simulated results for Gaussian pulse transmission over ultrahigh-PMD fiber. Dashed or dashed-dotted curve, original pulse; solid curve, deformed pulse. (a) After 400 m; (b) after 1.18 km.

Fig. 2.
Fig. 2.

Measured PMD of UHPF.

Fig 3.
Fig 3.

Transmitted experiments over ultra-high PMD fiber. (a) Original pulse. (b) after 400 m, (c) after 1.18km.

Fig. 4.
Fig. 4.

Schematic configuration of the walk-off pulse generated when Gauss pulse transmits over high PMD coefficient fiber

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J ( ω ) = i = m 1 B i ( ω ) R ( φ i ) = i = m 1 [ exp ( j w i ) 0 0 exp ( j w i ) ] [ cos ( φ i ) sin ( φ i ) sin ( φ i ) cos ( φ i ) ] ,
i A z + 1 2 δ β Ξ A + i 2 δ β Ξ A t 1 2 β 2 2 A t 2
+ n 2 k 0 [ 5 6 A 2 A + 1 6 ( A + p 3 A ) p 3 A + 1 3 ( A + p 2 A ) p 2 A * ] = 0 ,
δ β ( β ω ) ω 0 = β x β y ,
Ξ = ( cos ( 2 φ ) sin ( 2 φ ) sin ( 2 φ ) cos ( 2 φ ) ) = p 3 cos ( 2 φ ) + p 1 sin ( 2 φ ) ,
p 0 = ( 1 0 0 1 ) , p 1 = ( 0 1 1 0 ) , p 2 = ( 0 i i 0 ) , p 3 = ( 1 0 0 1 ) ,

Metrics