Abstract

We demonstrate the advantages of a ferroelectric liquid crystal spatial light modulator for optical tweezer array applications. The fast switching speeds of the ferroelectric device (compared to conventional nematic systems) is shown to enable very rapid reconfiguration of trap geometries, controlled, high speed particle movement, and tweezer array multiplexing.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamical hologram generation for high speed optical trapping of smart droplet microtools

P. M. P. Lanigan, I. Munro, E. J. Grace, D. R. Casey, J. Phillips, D. R. Klug, O. Ces, and M. A. A. Neil
Biomed. Opt. Express 3(7) 1609-1619 (2012)

Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications

A. Lafong, W. J. Hossack, J. Arlt, T. J. Nowakowski, and N. D. Read
Opt. Express 14(7) 3065-3072 (2006)

Optical trapping of three-dimensional structures using dynamic holograms

H. Melville, G.F. Milne, G.C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin
Opt. Express 11(26) 3562-3567 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical tap for dielectric particles,” Opt. Lett. 11, 288 (1986).
    [Crossref] [PubMed]
  2. K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: the next generation,” Physics World 15-10 (October 2002)
  3. P.T. Korda, G.C. Spalding, and D.G. Greir, “Evolution of a colloidal critical state in an optical pinning potential landscape”, Phys. Rev. B 66, 024504 (2002)
    [Crossref]
  4. R.L. Eriksen, V.R. Daria, P.J. Rodrigo, and J. Gluckstad, “Computer controlled orientation of multiple optically-trapped particles,” Microelectronic Engineering 67–68, 872, (2003)
    [Crossref]
  5. S. M. Block, H. C. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature (London)  338, 514 (1989).
    [Crossref] [PubMed]
  6. M. D Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophysics J. 72, 1335 (1997)
    [Crossref]
  7. W.M. Lee, X.C. Yuan, and D. Y. Tang, “Optical tweezers with multiple optical forces using double-hologram interference,” Opt. Express 11, 199 (2003).
    [Crossref] [PubMed]
  8. P.J. Rodrigo, R. L. Eriksen, V.R. Daria, and J. Glueckstad, “Shack-Hartmann multiple-beam optical tweezers,” Opt. Express 11, 208 (2003).
    [Crossref] [PubMed]
  9. H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3312 (1971)
    [Crossref]
  10. M.P. Dames, R.J. Dowling, P. McKee, and D. Wood, “Efficient optical elements to generate intensity weighted spot arrays: design and fabrication,” Appl. Opt. 302685 (1991)
    [Crossref] [PubMed]
  11. N.R Heckenburg, R. McDuff, C.P. Smith, H. Rubinsztein-Dunlop, and M.J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951 (1992)
    [Crossref]
  12. C. D’Helon, E.W. Dearden, H. Rubinsztein-Dunlop, and N.R. Heckenburg, “Measurement of the Optical Force and Trapping Range of a Single-beam Gradient Optical Trap for Micron-sized Latex Spheres,” J. Mod. Opt. 41, 595 (1994).
    [Crossref]
  13. E.R. Dufresne and D.G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Inst. 69, 1974 (1998).
    [Crossref]
  14. E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets, and D.G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Inst. 72, 1810, (2002)
    [Crossref]
  15. Hamanatsu Photonics, http://www.hamamatsu.com
  16. CRL Opto Ltd, http://www.crlopto.com
  17. K.M Johnson, M.A. Handschy, and L.A. Pagano-Stauffer “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 16, 385 (1987)
  18. J.E. Curtis, B.A. Kes, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169 (2002).
    [Crossref]

2003 (3)

2002 (3)

J.E. Curtis, B.A. Kes, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169 (2002).
[Crossref]

P.T. Korda, G.C. Spalding, and D.G. Greir, “Evolution of a colloidal critical state in an optical pinning potential landscape”, Phys. Rev. B 66, 024504 (2002)
[Crossref]

E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets, and D.G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Inst. 72, 1810, (2002)
[Crossref]

1998 (1)

E.R. Dufresne and D.G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Inst. 69, 1974 (1998).
[Crossref]

1997 (1)

M. D Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophysics J. 72, 1335 (1997)
[Crossref]

1994 (1)

C. D’Helon, E.W. Dearden, H. Rubinsztein-Dunlop, and N.R. Heckenburg, “Measurement of the Optical Force and Trapping Range of a Single-beam Gradient Optical Trap for Micron-sized Latex Spheres,” J. Mod. Opt. 41, 595 (1994).
[Crossref]

1992 (1)

N.R Heckenburg, R. McDuff, C.P. Smith, H. Rubinsztein-Dunlop, and M.J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951 (1992)
[Crossref]

1991 (1)

1989 (1)

S. M. Block, H. C. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature (London)  338, 514 (1989).
[Crossref] [PubMed]

1987 (1)

K.M Johnson, M.A. Handschy, and L.A. Pagano-Stauffer “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 16, 385 (1987)

1986 (1)

1971 (1)

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3312 (1971)
[Crossref]

Ashkin, A.

Berg, H. C.

S. M. Block, H. C. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature (London)  338, 514 (1989).
[Crossref] [PubMed]

Bjorkholm, J. E.

Blair, H. C.

S. M. Block, H. C. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature (London)  338, 514 (1989).
[Crossref] [PubMed]

Block, S. M.

M. D Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophysics J. 72, 1335 (1997)
[Crossref]

S. M. Block, H. C. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature (London)  338, 514 (1989).
[Crossref] [PubMed]

Chu, S.

Curtis, J.E.

J.E. Curtis, B.A. Kes, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169 (2002).
[Crossref]

D’Helon, C.

C. D’Helon, E.W. Dearden, H. Rubinsztein-Dunlop, and N.R. Heckenburg, “Measurement of the Optical Force and Trapping Range of a Single-beam Gradient Optical Trap for Micron-sized Latex Spheres,” J. Mod. Opt. 41, 595 (1994).
[Crossref]

Dames, M.P.

Dammann, H.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3312 (1971)
[Crossref]

Daria, V.R.

P.J. Rodrigo, R. L. Eriksen, V.R. Daria, and J. Glueckstad, “Shack-Hartmann multiple-beam optical tweezers,” Opt. Express 11, 208 (2003).
[Crossref] [PubMed]

R.L. Eriksen, V.R. Daria, P.J. Rodrigo, and J. Gluckstad, “Computer controlled orientation of multiple optically-trapped particles,” Microelectronic Engineering 67–68, 872, (2003)
[Crossref]

Dearden, E.W.

C. D’Helon, E.W. Dearden, H. Rubinsztein-Dunlop, and N.R. Heckenburg, “Measurement of the Optical Force and Trapping Range of a Single-beam Gradient Optical Trap for Micron-sized Latex Spheres,” J. Mod. Opt. 41, 595 (1994).
[Crossref]

Dearing, M.T.

E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets, and D.G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Inst. 72, 1810, (2002)
[Crossref]

Dholakia, K.

K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: the next generation,” Physics World 15-10 (October 2002)

Dowling, R.J.

Dufresne, E.R.

E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets, and D.G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Inst. 72, 1810, (2002)
[Crossref]

E.R. Dufresne and D.G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Inst. 69, 1974 (1998).
[Crossref]

Dziedzic, J. M.

Eriksen, R. L.

Eriksen, R.L.

R.L. Eriksen, V.R. Daria, P.J. Rodrigo, and J. Gluckstad, “Computer controlled orientation of multiple optically-trapped particles,” Microelectronic Engineering 67–68, 872, (2003)
[Crossref]

Gelles, J.

M. D Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophysics J. 72, 1335 (1997)
[Crossref]

Gluckstad, J.

R.L. Eriksen, V.R. Daria, P.J. Rodrigo, and J. Gluckstad, “Computer controlled orientation of multiple optically-trapped particles,” Microelectronic Engineering 67–68, 872, (2003)
[Crossref]

Glueckstad, J.

Gortler, K.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3312 (1971)
[Crossref]

Greir, D.G.

P.T. Korda, G.C. Spalding, and D.G. Greir, “Evolution of a colloidal critical state in an optical pinning potential landscape”, Phys. Rev. B 66, 024504 (2002)
[Crossref]

Grier, D.G.

E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets, and D.G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Inst. 72, 1810, (2002)
[Crossref]

J.E. Curtis, B.A. Kes, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169 (2002).
[Crossref]

E.R. Dufresne and D.G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Inst. 69, 1974 (1998).
[Crossref]

Handschy, M.A.

K.M Johnson, M.A. Handschy, and L.A. Pagano-Stauffer “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 16, 385 (1987)

Heckenburg, N.R

N.R Heckenburg, R. McDuff, C.P. Smith, H. Rubinsztein-Dunlop, and M.J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951 (1992)
[Crossref]

Heckenburg, N.R.

C. D’Helon, E.W. Dearden, H. Rubinsztein-Dunlop, and N.R. Heckenburg, “Measurement of the Optical Force and Trapping Range of a Single-beam Gradient Optical Trap for Micron-sized Latex Spheres,” J. Mod. Opt. 41, 595 (1994).
[Crossref]

Johnson, K.M

K.M Johnson, M.A. Handschy, and L.A. Pagano-Stauffer “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 16, 385 (1987)

Kes, B.A.

J.E. Curtis, B.A. Kes, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169 (2002).
[Crossref]

Korda, P.T.

P.T. Korda, G.C. Spalding, and D.G. Greir, “Evolution of a colloidal critical state in an optical pinning potential landscape”, Phys. Rev. B 66, 024504 (2002)
[Crossref]

Landick, R.

M. D Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophysics J. 72, 1335 (1997)
[Crossref]

Lee, W.M.

MacDonald, M.

K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: the next generation,” Physics World 15-10 (October 2002)

McDuff, R.

N.R Heckenburg, R. McDuff, C.P. Smith, H. Rubinsztein-Dunlop, and M.J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951 (1992)
[Crossref]

McKee, P.

Pagano-Stauffer, L.A.

K.M Johnson, M.A. Handschy, and L.A. Pagano-Stauffer “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 16, 385 (1987)

Rodrigo, P.J.

P.J. Rodrigo, R. L. Eriksen, V.R. Daria, and J. Glueckstad, “Shack-Hartmann multiple-beam optical tweezers,” Opt. Express 11, 208 (2003).
[Crossref] [PubMed]

R.L. Eriksen, V.R. Daria, P.J. Rodrigo, and J. Gluckstad, “Computer controlled orientation of multiple optically-trapped particles,” Microelectronic Engineering 67–68, 872, (2003)
[Crossref]

Rubinsztein-Dunlop, H.

C. D’Helon, E.W. Dearden, H. Rubinsztein-Dunlop, and N.R. Heckenburg, “Measurement of the Optical Force and Trapping Range of a Single-beam Gradient Optical Trap for Micron-sized Latex Spheres,” J. Mod. Opt. 41, 595 (1994).
[Crossref]

N.R Heckenburg, R. McDuff, C.P. Smith, H. Rubinsztein-Dunlop, and M.J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951 (1992)
[Crossref]

Sheets, S.A.

E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets, and D.G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Inst. 72, 1810, (2002)
[Crossref]

Smith, C.P.

N.R Heckenburg, R. McDuff, C.P. Smith, H. Rubinsztein-Dunlop, and M.J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951 (1992)
[Crossref]

Spalding, G.

K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: the next generation,” Physics World 15-10 (October 2002)

Spalding, G.C.

P.T. Korda, G.C. Spalding, and D.G. Greir, “Evolution of a colloidal critical state in an optical pinning potential landscape”, Phys. Rev. B 66, 024504 (2002)
[Crossref]

E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets, and D.G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Inst. 72, 1810, (2002)
[Crossref]

Tang, D. Y.

Wang, M. D

M. D Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophysics J. 72, 1335 (1997)
[Crossref]

Wegener, M.J.

N.R Heckenburg, R. McDuff, C.P. Smith, H. Rubinsztein-Dunlop, and M.J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951 (1992)
[Crossref]

Wood, D.

Yin, H.

M. D Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophysics J. 72, 1335 (1997)
[Crossref]

Yuan, X.C.

Appl. Opt. (1)

Biophysics J. (1)

M. D Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophysics J. 72, 1335 (1997)
[Crossref]

J. Mod. Opt. (1)

C. D’Helon, E.W. Dearden, H. Rubinsztein-Dunlop, and N.R. Heckenburg, “Measurement of the Optical Force and Trapping Range of a Single-beam Gradient Optical Trap for Micron-sized Latex Spheres,” J. Mod. Opt. 41, 595 (1994).
[Crossref]

Microelectronic Engineering (1)

R.L. Eriksen, V.R. Daria, P.J. Rodrigo, and J. Gluckstad, “Computer controlled orientation of multiple optically-trapped particles,” Microelectronic Engineering 67–68, 872, (2003)
[Crossref]

Nature (1)

S. M. Block, H. C. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature (London)  338, 514 (1989).
[Crossref] [PubMed]

Opt. Commun. (2)

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3312 (1971)
[Crossref]

J.E. Curtis, B.A. Kes, and D.G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169 (2002).
[Crossref]

Opt. Eng. (1)

K.M Johnson, M.A. Handschy, and L.A. Pagano-Stauffer “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 16, 385 (1987)

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

N.R Heckenburg, R. McDuff, C.P. Smith, H. Rubinsztein-Dunlop, and M.J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951 (1992)
[Crossref]

Phys. Rev. B (1)

P.T. Korda, G.C. Spalding, and D.G. Greir, “Evolution of a colloidal critical state in an optical pinning potential landscape”, Phys. Rev. B 66, 024504 (2002)
[Crossref]

Physics World (1)

K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: the next generation,” Physics World 15-10 (October 2002)

Rev. Sci. Inst. (2)

E.R. Dufresne and D.G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Inst. 69, 1974 (1998).
[Crossref]

E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets, and D.G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Inst. 72, 1810, (2002)
[Crossref]

Other (2)

Hamanatsu Photonics, http://www.hamamatsu.com

CRL Opto Ltd, http://www.crlopto.com

Supplementary Material (3)

» Media 1: MOV (603 KB)     
» Media 2: MOV (1547 KB)     
» Media 3: MOV (2516 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic layout of optical system

Fig. 2.
Fig. 2.

(0.6 MB) Movie of 4×4 array of traps on 5µm pitch with 700 mW total input power showing capture of final trap.

Fig. 3.
Fig. 3.

(1.5 MB) Movie of two movable array of traps rotating two beads in a 10.5µm circle with maximum speed of 35µms-1.

Fig. 4.
Fig. 4.

Composite hologram for 5×1 static hologram in “red” and “green” channels and two trap hologram in “blue” channel.

Fig. 5.
Fig. 5.

(2.46 MB) Movie showing five fixed and two movable traps formed by two-to-one multiplex.

Metrics