Abstract

We report a chirped fiber Bragg grating transducer for the measurement of acceleration, in which a cantilever beam and fiber Bragg grating are used. The cantilever induces strain on the grating resulting in a Bragg grating wavelength modification that is subsequently detected. The output signal is insensitive to temperature variations and for a temperature change from -20 °C to 40 °C, the output signal fluctuated less than 5 % without any temperature compensation schemes. Because the accelerometer does not utilize the complex demodulation techniques it is potentially inexpensive. For the experimental system a linear output range of 8 g could be detected.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. O. Hill, F. Fujii, D. C. Johnson, and B. S. Kawasaki, �??Photosensitivity on optical fiber waveguides: application to reflection filter fabrication,�?? Appl. Physics Lett. 32, 647-649 (1978).
    [CrossRef]
  2. V. Mizrahi, �??Components and devices for optical communications based on UV-written-fiber phase gratings,�?? Optical Fiber Communications Conference, San Jose (1993).
  3. J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, �??Fiber dispersion compensation using a chirped in-fiber Bragg grating,�?? Electron. Lett. 30, 985-987 (1994).
    [CrossRef]
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, �??Fiber grating sensors,�?? J. Lightwave Tech. 15, 1442-1462 (1997).
    [CrossRef]
  5. S. M. Melle, T. Alavic, S. Karr, T. coroy, K. Lui, and R. M. Measures, �??A Bragg grating-tuned fiber laser strain sensor system,�?? IEEE Photon. Tech. Lett. 5, 516-518 (1992).
    [CrossRef]
  6. Y. J. Rao, �??In-fiber Bragg grating sensors,�?? Meas. Sci. Tech. 8, 355-375 (1997).
    [CrossRef]
  7. W. W. Morey, G. Meltz, and W. H. Glenn, �??Fiber optic Bragg grating sensors,�?? SPIE, 1169, 98-107 (1989).
  8. R. T. Jones, T. A. Berkoff, D. G. Dellemore, D. A. Early, J. S. Sirks, M. A. Putnam, E. J. Friebele, and A. D. Kersey, �??Cantilever plate deformation monitoring using wavelength division multiplexed fiber Bragg grating sensor,�?? SPIE, 2718, 258-268 (1996).
    [CrossRef]
  9. M. G. Xu, H. Geiger, and J. P. Dakin, �??Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing,�?? Electron. Lett. 32, 128-129 (1996).
    [CrossRef]
  10. T. A. Beroff and A. D. Kersey, �??Experimental demonstration of a fiber Bragg grating accelerometer,�?? IEEE Photon. Tech. Lett. 8, 1677-1679 (1996).
    [CrossRef]
  11. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, �??Flexural beam-based fiber Bragg grating accelerometers,�?? IEEE Photon. Tech. Lett. 10, 1605-1607 (1998).
    [CrossRef]
  12. G. Meltz, W. W. Morey, and W. H. Glenn, �??Formation of Bragg gratings in optical fiber by a transverse holographic method,�?? Opt. Lett. 14, 823-825 (1989).
    [CrossRef] [PubMed]
  13. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, �??Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,�?? Appl. Phys. Lett. 62, 1035-1037 (1993).
    [CrossRef]
  14. R. Kashyap, Fiber Bragg Grating (Academic Press, 1999), Chap. 4.
  15. J. Dunphy, G. Meltz, F. Lamm, and W. Morey, �??Fiber-optic strain sensor multi-function, distributed optical fiber sensor for composite cure and response monitoring,�?? SPIE, 1370, 116-118 (1991).
  16. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3
  17. K. O. Hill, F. Bilodeau, B. Molo, T. Kitagawa, S. Theriault, D. C. Johnson, and J. Albert, �??Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,�?? Opt. Lett. 19, 1314-1316 (1994).
    [CrossRef] [PubMed]
  18. K. H. Huebner, The finite Element Method for Engineer (John Wiley & Sons, 1975), Chap. 2.
  19. P. L. Fuhr, S. J. Spammer, and Y. Zhu, �??A novel signal demodulation technique for chirped Bragg grating strain sensors,�?? Smart Mater. Struct. 9, 85-94, (2000).
    [CrossRef]
  20. Y. Zhu, B. M. Lacquet, P. L. Swart, and S. J. Spammer, �??Realization of chirped fiber Bragg gratings by using differently tapered transducers and loading procedures,�?? Meas. Sci. Tech. 12, 922-926 (2001).

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, �??Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,�?? Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Appl. Physics Lett. (1)

K. O. Hill, F. Fujii, D. C. Johnson, and B. S. Kawasaki, �??Photosensitivity on optical fiber waveguides: application to reflection filter fabrication,�?? Appl. Physics Lett. 32, 647-649 (1978).
[CrossRef]

Electron. Lett. (2)

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, �??Fiber dispersion compensation using a chirped in-fiber Bragg grating,�?? Electron. Lett. 30, 985-987 (1994).
[CrossRef]

M. G. Xu, H. Geiger, and J. P. Dakin, �??Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing,�?? Electron. Lett. 32, 128-129 (1996).
[CrossRef]

IEEE Photon. Tech. Lett. (3)

T. A. Beroff and A. D. Kersey, �??Experimental demonstration of a fiber Bragg grating accelerometer,�?? IEEE Photon. Tech. Lett. 8, 1677-1679 (1996).
[CrossRef]

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, �??Flexural beam-based fiber Bragg grating accelerometers,�?? IEEE Photon. Tech. Lett. 10, 1605-1607 (1998).
[CrossRef]

S. M. Melle, T. Alavic, S. Karr, T. coroy, K. Lui, and R. M. Measures, �??A Bragg grating-tuned fiber laser strain sensor system,�?? IEEE Photon. Tech. Lett. 5, 516-518 (1992).
[CrossRef]

J. Lightwave Tech. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, �??Fiber grating sensors,�?? J. Lightwave Tech. 15, 1442-1462 (1997).
[CrossRef]

Meas. Sci. Tech (1)

Y. Zhu, B. M. Lacquet, P. L. Swart, and S. J. Spammer, �??Realization of chirped fiber Bragg gratings by using differently tapered transducers and loading procedures,�?? Meas. Sci. Tech. 12, 922-926 (2001).

Meas. Sci. Tech. (1)

Y. J. Rao, �??In-fiber Bragg grating sensors,�?? Meas. Sci. Tech. 8, 355-375 (1997).
[CrossRef]

Opt. Lett. (2)

Smart Mater. Struct. (1)

P. L. Fuhr, S. J. Spammer, and Y. Zhu, �??A novel signal demodulation technique for chirped Bragg grating strain sensors,�?? Smart Mater. Struct. 9, 85-94, (2000).
[CrossRef]

SPIE (3)

J. Dunphy, G. Meltz, F. Lamm, and W. Morey, �??Fiber-optic strain sensor multi-function, distributed optical fiber sensor for composite cure and response monitoring,�?? SPIE, 1370, 116-118 (1991).

W. W. Morey, G. Meltz, and W. H. Glenn, �??Fiber optic Bragg grating sensors,�?? SPIE, 1169, 98-107 (1989).

R. T. Jones, T. A. Berkoff, D. G. Dellemore, D. A. Early, J. S. Sirks, M. A. Putnam, E. J. Friebele, and A. D. Kersey, �??Cantilever plate deformation monitoring using wavelength division multiplexed fiber Bragg grating sensor,�?? SPIE, 2718, 258-268 (1996).
[CrossRef]

Other (4)

V. Mizrahi, �??Components and devices for optical communications based on UV-written-fiber phase gratings,�?? Optical Fiber Communications Conference, San Jose (1993).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3

R. Kashyap, Fiber Bragg Grating (Academic Press, 1999), Chap. 4.

K. H. Huebner, The finite Element Method for Engineer (John Wiley & Sons, 1975), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Reflection spectra of both the uniform and the chirped Bragg gratings.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Fiber Bragg grating output for beam tip displacement.

Fig. 4.
Fig. 4.

Dependence of Bragg wavelength shift on temperature.

Fig. 5.
Fig. 5.

Dependence of sensor output signal on temperature.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n Λ
Δ λ B = 2 n Λ ( { 1 ( n 2 2 ) [ P 12 ν ( P 11 + P 12 ) ] } Δ ε + [ a + ( dn dT ) n ] Δ T )
ε ( x ) = 12 F ( l x ) ν ( x ) Emb ( x ) d 3 ( x )
ε ( x ) = 6 F ( l x ) m b d 3 E a
δ λ B λ B = ( 1 p e ) ε 0.78 ε 6.7 × 10 6 ° C

Metrics