Abstract

Absorption and dispersion signals of D2 lines of rubidium atoms in a vapor cell have been experimentally investigated with the modulation transfer spectrum (MTS). Normal dispersion was observed at the transitions of FgFe=Fg-1 and FgFe=Fg; anomalous dispersion, at transitions of FgFe=Fg+1; and crossover resonance, by the transitions of FgFe=Fg-1 and FgFe=Fg. The signal lineshape of the MTS and the detector phase are addressed accurately.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. H. Shirley, 'Modulation transfer processes in optical heterodyne saturation spectroscopy,' Opt. Lett. 7, 537-539 (1982).
    [CrossRef] [PubMed]
  2. G. Camy, Ch. Borde, and M. Ducloy, �??Hererodyne saturation spectroscopy through frequency modulation of the saturating beam,�?? Opt. Commun. 41, 325 (1982).
    [CrossRef]
  3. M. Ducloy and D. Bloch, �??Polarization properties of phase-conjugate mirrors: angular dependence and disorienting collision effects in resonant backward four-wave mixing for Doppler-broadened degenerate transitions,�?? Phys. Rev. A 30, 3107-3122 (1984).
    [CrossRef]
  4. L. S. Ma and J. L. Hall, �??Optical hererodyne spectroscopy enhanced by an external optical cavity toward improved working standards,�?? IEEE J. Quantum Electron. 26, 2006-2012 (1990).
    [CrossRef]
  5. E. Jaatinen, �??Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,�?? Opt. Commun. 120, 91-97 (1995).
    [CrossRef]
  6. M. L. Eickhoff and J. L. Hall, �??Optical frequency standard at 532nm,�?? IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
    [CrossRef]
  7. J. Ye, L. Robertsson, S. Picard, L. S. Ma, and J. L. Hall, �??Absolute frequency atlas of molecular I-2 lines at 532 nm,�?? IEEE Trans. Instrum. Meas. 48, 544-549 (1999).
    [CrossRef]
  8. F. L. Hong, J. Ishikawa, J. Yoda, J. Ye, L. S. Ma, and J. L. Hall, �??Frequency comparison of I-127(2)-stabilized Nd:YAG lasers,�?? IEEE Trans. Instrum. Meas. 48, 532-536 (1999).
    [CrossRef]
  9. F. L. Hong, J. Ishikawa, Z. Y. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, �??Portable I-2-stabilized Nd : YAG laser for international comparisons,�?? IEEE Trans. Instrum. Meas. 50, 486-489 (2001).
    [CrossRef]
  10. N. Ito, �??Doppler-free modulation transfer spectroscopy of rubidium 52S1/2-62P1/2 transitions using a frequency doubled diode laser blue-light source,�?? Rev. Sci. Instrum. 71, 2655-2662 (2000).
    [CrossRef]
  11. F. Bertinetto, P. Cordiale, and G. Galzerano, �??Frequency stabilization of DBR diode laser against Cs absorption lines at 852nm using the modulation transfer method,�?? IEEE Trans. Instrum. Meas. 50, 490-492 (2001).
    [CrossRef]
  12. O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, �??Cesium saturation spectroscopy revisited�??how to reverse peaks and observe narrow resonances,�?? Appl. Phys. B 59, 167-178 (1994).
    [CrossRef]
  13. K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, �??Saturated absorption signals for the Cs D2 line,�?? Phys. Rev. A 63, 034501 (2001).
    [CrossRef]
  14. A. M. Akulshin, S. Barreiro, and A. Lezama, �??Steep anomalous dispersion in coherently prepared Rb vapor,�?? Phys. Rev. Lett. 83, 4277-4280 (1999).
    [CrossRef]
  15. A. Lezama, S. Barreiro, and A. M. Akulshin, �??Electromagnetically induced absorption,�?? Phys. Rev. A 59, 4732-4735 (1999).
    [CrossRef]

Appl. Phys. B (1)

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, �??Cesium saturation spectroscopy revisited�??how to reverse peaks and observe narrow resonances,�?? Appl. Phys. B 59, 167-178 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. S. Ma and J. L. Hall, �??Optical hererodyne spectroscopy enhanced by an external optical cavity toward improved working standards,�?? IEEE J. Quantum Electron. 26, 2006-2012 (1990).
[CrossRef]

IEEE Trans. Instrum. Meas. (5)

M. L. Eickhoff and J. L. Hall, �??Optical frequency standard at 532nm,�?? IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L. S. Ma, and J. L. Hall, �??Absolute frequency atlas of molecular I-2 lines at 532 nm,�?? IEEE Trans. Instrum. Meas. 48, 544-549 (1999).
[CrossRef]

F. L. Hong, J. Ishikawa, J. Yoda, J. Ye, L. S. Ma, and J. L. Hall, �??Frequency comparison of I-127(2)-stabilized Nd:YAG lasers,�?? IEEE Trans. Instrum. Meas. 48, 532-536 (1999).
[CrossRef]

F. L. Hong, J. Ishikawa, Z. Y. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, �??Portable I-2-stabilized Nd : YAG laser for international comparisons,�?? IEEE Trans. Instrum. Meas. 50, 486-489 (2001).
[CrossRef]

F. Bertinetto, P. Cordiale, and G. Galzerano, �??Frequency stabilization of DBR diode laser against Cs absorption lines at 852nm using the modulation transfer method,�?? IEEE Trans. Instrum. Meas. 50, 490-492 (2001).
[CrossRef]

Opt. Commun. (2)

E. Jaatinen, �??Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,�?? Opt. Commun. 120, 91-97 (1995).
[CrossRef]

G. Camy, Ch. Borde, and M. Ducloy, �??Hererodyne saturation spectroscopy through frequency modulation of the saturating beam,�?? Opt. Commun. 41, 325 (1982).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

A. Lezama, S. Barreiro, and A. M. Akulshin, �??Electromagnetically induced absorption,�?? Phys. Rev. A 59, 4732-4735 (1999).
[CrossRef]

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, �??Saturated absorption signals for the Cs D2 line,�?? Phys. Rev. A 63, 034501 (2001).
[CrossRef]

M. Ducloy and D. Bloch, �??Polarization properties of phase-conjugate mirrors: angular dependence and disorienting collision effects in resonant backward four-wave mixing for Doppler-broadened degenerate transitions,�?? Phys. Rev. A 30, 3107-3122 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

A. M. Akulshin, S. Barreiro, and A. Lezama, �??Steep anomalous dispersion in coherently prepared Rb vapor,�?? Phys. Rev. Lett. 83, 4277-4280 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

N. Ito, �??Doppler-free modulation transfer spectroscopy of rubidium 52S1/2-62P1/2 transitions using a frequency doubled diode laser blue-light source,�?? Rev. Sci. Instrum. 71, 2655-2662 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Absorption X (curve a) and dispersion Y (curve b) lineshapes of the MTS for ω m <Γ,β<1.Γ=5 MHz and ω m =2 MHz.

Fig. 2.
Fig. 2.

Experimental setup for the MTS of Rb. BPF, bandpass filter; BS, beam splitter; PBS, polarizing beam splitter; VCO, voltage-controlled oscillator; AOM, acousto-optic modulator; PD, photodiode.

Fig. 3.
Fig. 3.

Spectra when the laser-diode frequency is scanned over the transition Fg =3→Fe of the D2 line of 85Rb for various polarizations of the probe beam. The linear polarization of pump beam is in the vertical direction. (a) Linear polarization of the probe beam is perpendicular with that of pump light. (b) Linear polarization of the probe beam is at ~60° with respect to that of pump beam. (c) Linear polarization of the probe beam is at ~40° with respect to that of pump beam. The transitions are identified at the top of diagram (a): “CO3-4” for the crossover resonance between the 3→3 and the 3→4 transitions.

Fig. 4.
Fig. 4.

Spectra when the laser-diode frequency is scanned over the transition Fg =2→Fe of the D2 line of 85Rb. The linear polarizations of the probe beam are perpendicular to those of pump beam.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

signal = 1 Γ 2 + ω m 2 n = J n ( β ) J n 1 ( β )
× [ C ( L ( n + 1 ) 2 + L ( n 2 ) 2 ) cos ( ω m t + ϕ )
+ B ( D ( n + 1 ) 2 D ( n 2 ) 2 ) sin ( ω m t + ϕ ) ] ,
signal = X cos ( ω m t + ϕ ) + Y sin ( ω m t + ϕ ) .

Metrics