Abstract

Most current optical coherence tomography systems provide two-dimensional cross-sectional or en face images. Successive adjacent images have to be acquired to reconstruct three-dimensional objects, which can be time consuming. Here we demonstrate three-dimensional optical coherence tomography (3D OCT) at video rate. A 58 by 58 smart-pixel detector array was employed. A sample volume of 210x210x80 μm3 (corresponding to 58x58x58 voxels) was imaged at 25 Hz. The longitudinal and transverse resolutions are 3 μm and 9 μm respectively. The sensitivity of the system was 76 dB. Video rate 3D OCT is illustrated by movies of a strand of hair undergoing fast thermal damage.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. E. Brezinski and J. G. Fujimoto, "Optical coherence tomography: high-resolution imaging in nontransparent tissue," IEEE J. Selec. Top. Quant. Electron. 5, 1185-1192 (1999)
    [CrossRef]
  2. A. F. Fercher, "Optical Coherence Tomography," J. Biomed. Opt. 1, 157-173 (1996)
    [CrossRef] [PubMed]
  3. J. M. Schmitt, "Optical Coherence Tomography (OCT): A Review," IEEE J. Selec. Top. Quant. Electron. 5, 1205-1215 (1999)
    [CrossRef]
  4. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999)
    [CrossRef]
  5. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>
    [CrossRef] [PubMed]
  6. J. Szydlo, N. Delachenal, R. Giannotti, R. Walti, H. Bleuler, and R. P. Salathe, "Air-turbine driven optical low-coherence reflectometry at 28.6- kHz scan repetition rate," Opt. Commun. 154, 1-4 (1998)
    [CrossRef]
  7. M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, "Birefringence characterization of biological tissue by use of optical coherence tomography," Opt. Lett. 23, 228-230 (1998)
    [CrossRef]
  8. J. F. deBoer, T. E. Milner, M. J. C. vanGemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997)
    [CrossRef]
  9. X. J. Wang, T. E. Milner, and J. S. Nelson, "Characterization of Fluid-Flow Velocity by Optical Doppler Tomography," Opt. Lett. 20, 1337-1339 (1995)
    [CrossRef] [PubMed]
  10. J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, "Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images," Dermatology 198, 355-361 (1999)
    [CrossRef]
  11. Y. Pan and D. Farkas, "Non-invasive Imaging of Living Human Skin with Dual-wavelength Optical Coherence Tomography in Two and Three Dimensions," J. Biomed. Opt. 3, 446-455 (1998)
    [CrossRef] [PubMed]
  12. J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography," Fertil. Steril. 70, 155-158 (1998)
    [CrossRef] [PubMed]
  13. A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, "Three dimensional OCT images from retina and skin," Opt. Express 7, 292-298 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-292">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-292</a>
    [CrossRef] [PubMed]
  14. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Y. Wang, M. E. Williams, and S. E. Fraser, "An optical coherence microscope for 3-dimensional imaging in developmental biology," Opt. Express 6, 136-146 (2000), Opt. Express <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-7-136">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-7-136</a>
    [CrossRef] [PubMed]
  15. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998)
    [CrossRef]
  16. A. Knüttel, J. M. Schmitt, and J. R. Knutson, "Low-coherence reflectometry for stationary lateral and depth profiling with acousto-optic deflectors and a CCD camera," Opt. Lett. 19, 302-304 (1994)
    [CrossRef] [PubMed]
  17. S. Bourquin, P. Seitz, and R. P. Salathé, "Optical coherence topography based on a two-dimensional smart detector array," Opt. Lett. 26, 512-514 (2001)
    [CrossRef]
  18. S. Bourquin, V. Monterosso, P. Seitz, and R. P. Salathé, "Video rate optical low-coherence reflectometry based on a linear smart detector array," Opt. Lett. 25, 102-104 (2000)
    [CrossRef]
  19. M. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, and R. P. Salathe, "Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array," Opt. Commun. 202, 29-35 (2002)
    [CrossRef]
  20. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-2 (1994)
    [CrossRef] [PubMed]
  21. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151-3 (1992)
    [CrossRef] [PubMed]
  22. P. Thevenaz and M. Unser, "High-Quality Isosurface Rendering with Exact Gradient," in Proceedings of The 2001 IEEE International Conference on Image Processing (ICIP'01), 1, 854-857 (2001).

Dermatology

J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, "Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images," Dermatology 198, 355-361 (1999)
[CrossRef]

Fertil. Steril.

J. M. Herrmann, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography," Fertil. Steril. 70, 155-158 (1998)
[CrossRef] [PubMed]

ICIP'01

P. Thevenaz and M. Unser, "High-Quality Isosurface Rendering with Exact Gradient," in Proceedings of The 2001 IEEE International Conference on Image Processing (ICIP'01), 1, 854-857 (2001).

IEEE J. Selec. Top. Quant. Electron.

M. E. Brezinski and J. G. Fujimoto, "Optical coherence tomography: high-resolution imaging in nontransparent tissue," IEEE J. Selec. Top. Quant. Electron. 5, 1185-1192 (1999)
[CrossRef]

J. M. Schmitt, "Optical Coherence Tomography (OCT): A Review," IEEE J. Selec. Top. Quant. Electron. 5, 1205-1215 (1999)
[CrossRef]

J. Biomed. Opt.

A. F. Fercher, "Optical Coherence Tomography," J. Biomed. Opt. 1, 157-173 (1996)
[CrossRef] [PubMed]

Y. Pan and D. Farkas, "Non-invasive Imaging of Living Human Skin with Dual-wavelength Optical Coherence Tomography in Two and Three Dimensions," J. Biomed. Opt. 3, 446-455 (1998)
[CrossRef] [PubMed]

Opt. Commun.

M. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, and R. P. Salathe, "Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array," Opt. Commun. 202, 29-35 (2002)
[CrossRef]

J. Szydlo, N. Delachenal, R. Giannotti, R. Walti, H. Bleuler, and R. P. Salathe, "Air-turbine driven optical low-coherence reflectometry at 28.6- kHz scan repetition rate," Opt. Commun. 154, 1-4 (1998)
[CrossRef]

Opt. Express

Opt. Lett.

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998)
[CrossRef]

A. Knüttel, J. M. Schmitt, and J. R. Knutson, "Low-coherence reflectometry for stationary lateral and depth profiling with acousto-optic deflectors and a CCD camera," Opt. Lett. 19, 302-304 (1994)
[CrossRef] [PubMed]

S. Bourquin, P. Seitz, and R. P. Salathé, "Optical coherence topography based on a two-dimensional smart detector array," Opt. Lett. 26, 512-514 (2001)
[CrossRef]

S. Bourquin, V. Monterosso, P. Seitz, and R. P. Salathé, "Video rate optical low-coherence reflectometry based on a linear smart detector array," Opt. Lett. 25, 102-104 (2000)
[CrossRef]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-2 (1994)
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151-3 (1992)
[CrossRef] [PubMed]

M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, "Birefringence characterization of biological tissue by use of optical coherence tomography," Opt. Lett. 23, 228-230 (1998)
[CrossRef]

J. F. deBoer, T. E. Milner, M. J. C. vanGemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997)
[CrossRef]

X. J. Wang, T. E. Milner, and J. S. Nelson, "Characterization of Fluid-Flow Velocity by Optical Doppler Tomography," Opt. Lett. 20, 1337-1339 (1995)
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999)
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (149 KB)     
» Media 2: MOV (740 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Parallel OCT optical setup schematic. The different elements are: mode-locked Ti:Sapphire femtosecond laser (MLTS); achromatic lenses (L1, L2, L3, and L6); non-polarizing achromatic beamsplitter cube (BS); identical achromatic microscope objectives 20X, 0.45 NA (L4 and L5); reference mirror (RM); variable neutral density filter wheel (F); compensation glass plate (C); 58 by 58 smart pixel detector array (SPDA) and sample (S).

Fig. 2.
Fig. 2.

(left) Schematic of the imaged volume (dashed parallelepiped) in relation to the sample (hair strand on glass slide). (center) En face image (210x210 μm2) at the height of the contact between hair and glass. (right top) Longitudinal cut (210x80 μm2) parallel to and at the center of the hair. (right bottom) Cross-sectional cut (210x80 μm2) perpendicular to the axis of the hair strand.

Fig. 3.
Fig. 3.

(149 kB) Tomographic images acquired during a 1600ms time interval at a rate of 25 volumes per second (40 time frames). (left) En face image (210x210 μm2) at the height of the contact between hair and glass. (center) Cross-sectional cut (210x80 μm2). (right) Longitudinal cut (210x80 μm2) parallel to and at the center of the hair. Reflectivity grayscale as in Figure 2.

Fig.4.
Fig.4.

(740 kB) Movie of a 3D rendering of the sample based on isosurfaces. To facilitate the comprehension of this particular perspective we indicate the situation of the hair and the glass slide by the colored lines in the first frame.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = 20 log V 2 % max σ + 10 log 1 0.02

Metrics