Abstract

A superluminescent Ti:Al2O3 crystal is demonstrated as a light source for ultrahigh resolution optical coherence tomography (OCT). Single spatial mode, fiber coupled output powers of ~40 μW can be generated with 138 nm bandwidth using a 5 W frequency doubled, diode pumped laser, pumping a thin Ti:Al2O3 crystal. Ultrahigh resolution OCT imaging is demonstrated with 2.2 μm axial resolution in air, or 1.7 μm in tissue, with >86 dB sensitivity. This light source provides a simple and robust alternative to femtosecond lasers for ultrahigh resolution OCT imaging.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, �Optical coherence tomography,� Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, �In vivo endoscopic optical biopsy with optical coherence tomography,� Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  3. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, �In vivo cellular optical coherence tomography imaging,� Nature Med. 4, 861-865 (1998).
    [CrossRef] [PubMed]
  4. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, �High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,� Opt. Lett. 20, 1486-1488 (1995).
    [CrossRef] [PubMed]
  5. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, �Self phase modulated Kerr-lens mode locked Cr:forsterite laser source for optical coherent tomography,� Opt. Lett. 21, 1839-1841 (1996).
    [CrossRef] [PubMed]
  6. I. Hartl, X. D. Li, C. Chudoba, R. Ghanta, T. Ko, J. G. Fujimoto, J. K. Ranka, R. S. Windeler, A. J. Stentz, �Ultrahigh resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,� Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  7. W. Drexler, U. Morgner, F. X. Kaertner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, �In vivo resolution optical coherence tomography,� Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  8. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, J. G. Fujimoto, �Ultrahigh resolution opthalmic optical coherence tomography,� Nature Med. 7, 502-507 (2001).
    [CrossRef] [PubMed]
  9. X. Clivaz, F. Marquis-Weible, R. P. Salathe, �Optical low coherence reflectometry with 1.9 �m spatial resolution,� Electron. Lett. 28, 1553-1554 (1994).
    [CrossRef]
  10. H. H. Liu, P. H. Cheng, J. Wang, �Spatially coherent white light interferometer based on a point fluorescent source,� Opt. Lett. 18, 678-680 (1993).
    [CrossRef] [PubMed]
  11. A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, N. A. Vainos, �Ti:sapphire planar waveguide laser grown by pulsed laser deposition,� Opt. Lett. 22, 1556-1558 (1997).
    [CrossRef]
  12. M. Pollnau, R. P. Salathe, T. Bhutta, D. P. Shepherd, R. W. Eason, �Continuous-wave broadband emitter based on a transition-metal-ion-doped waveguide,� Opt. Lett. 26, 283-285 (2001).
    [CrossRef]

Electron. Lett. (1)

X. Clivaz, F. Marquis-Weible, R. P. Salathe, �Optical low coherence reflectometry with 1.9 �m spatial resolution,� Electron. Lett. 28, 1553-1554 (1994).
[CrossRef]

Nature Med. (2)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, �In vivo cellular optical coherence tomography imaging,� Nature Med. 4, 861-865 (1998).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, J. G. Fujimoto, �Ultrahigh resolution opthalmic optical coherence tomography,� Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Opt. Lett. (7)

H. H. Liu, P. H. Cheng, J. Wang, �Spatially coherent white light interferometer based on a point fluorescent source,� Opt. Lett. 18, 678-680 (1993).
[CrossRef] [PubMed]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, �High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,� Opt. Lett. 20, 1486-1488 (1995).
[CrossRef] [PubMed]

A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, N. A. Vainos, �Ti:sapphire planar waveguide laser grown by pulsed laser deposition,� Opt. Lett. 22, 1556-1558 (1997).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kaertner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, �In vivo resolution optical coherence tomography,� Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, �Self phase modulated Kerr-lens mode locked Cr:forsterite laser source for optical coherent tomography,� Opt. Lett. 21, 1839-1841 (1996).
[CrossRef] [PubMed]

M. Pollnau, R. P. Salathe, T. Bhutta, D. P. Shepherd, R. W. Eason, �Continuous-wave broadband emitter based on a transition-metal-ion-doped waveguide,� Opt. Lett. 26, 283-285 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. Ghanta, T. Ko, J. G. Fujimoto, J. K. Ranka, R. S. Windeler, A. J. Stentz, �Ultrahigh resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,� Opt. Lett. 26, 608-610 (2001).
[CrossRef]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, �Optical coherence tomography,� Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, �In vivo endoscopic optical biopsy with optical coherence tomography,� Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Figure 1.
Figure 1.

Experimental schematic of low coherence light source. A high doping density Ti:Al2O3 crystal enables pumping with a high excitation density per unit volume. A double pass pump and fluorescence collection geometry is used.

Figure 2.
Figure 2.

Output power coupled into a single mode optical fiber versus pump power. A double pass configuration approximately doubles the collected power.

Figure 3.
Figure 3.

(left) Spectrum after coupling into a single mode optical fiber. The bandwidth is 138 nm centered at 761 nm. (right) Interference fringes from photodetector at the output of the OCT dual balanced interferometer. The axial resolution is 2.2 μm in air, corresponding to 1.7 μm in tissue.

Figure 4.
Figure 4.

Schematic of ultrahigh resolution OCT system. A dual balanced interferometer was used to cancel the excess noise in the light source. Dispersion was balanced in the sample and reference arms.

Figure 5.
Figure 5.

Ultrahigh resolution OCT imaging of African Frog (Xenopus Laevis) tadpole in vivo. (Left) Imaging was performed with <2 μm axial resolution and 5 μm transverse resolution. (Right) A composite image with extended depth of field formed by fusing 5 images with different focal depth settings.

Metrics