Abstract

We report a focus shaping technique using generalized cylindrical vector beams. A generalized cylindrical vector beam can be decomposed into radially polarized and azimuthally polarized components. Such a generalized cylindrical beam can be generated from a radially polarized or an azimuthally polarized light using a two-half-wave-plate polarization rotator. The intensity pattern at the focus can be tailored by appropriately adjusting the rotation angle. Peak-centered, donut and flattop focal shapes can be obtained using this technique.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pohl, “Operation of a Ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
    [CrossRef]
  2. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astignmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
    [CrossRef]
  3. M. W. Beijerbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beam produced with a spiral phaseplate,” Opt. Commun. 112. 321–327 (1994).
    [CrossRef]
  4. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [CrossRef] [PubMed]
  5. R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
    [CrossRef]
  6. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
    [CrossRef]
  7. K. Schuster, “Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement,” US patent 6191880 B1 (2001).
  8. L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens system,” Opt. Commun. 191, 161–172 (2001).
    [CrossRef]
  9. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light- theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
    [CrossRef]
  10. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [CrossRef]
  11. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Optics Express 7, 77–87 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-77.
    [CrossRef] [PubMed]
  12. D. P. Biss and T. G. brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9, 490–497 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-10-490.
    [CrossRef] [PubMed]
  13. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B. 15, 1381–1386 (1998).
    [CrossRef]
  14. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particle from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [CrossRef] [PubMed]
  15. J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
    [CrossRef]
  16. B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
    [CrossRef]
  17. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
    [CrossRef]
  18. S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
    [CrossRef] [PubMed]
  19. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D. 32, 1455–1461 (1999).
    [CrossRef]
  20. Qiwen Zhan and James R. Leger, “Microellipsometer with radial symmetry,” submitted to Appl. Opt.
  21. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Ser. A 253, pp. 349–357 (1959).
    [CrossRef]
  22. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, pp. 358–379 (1959).
    [CrossRef]
  23. Min Gu (editor), Advanced optical imaging theory, 75 (Springer-Verlag, New York, 1999)
  24. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh cattering regime,” Opt. Commun.  124, 529–541 (1996).

2001 (3)

L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens system,” Opt. Commun. 191, 161–172 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light- theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

D. P. Biss and T. G. brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9, 490–497 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-10-490.
[CrossRef] [PubMed]

2000 (4)

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Optics Express 7, 77–87 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-77.
[CrossRef] [PubMed]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D. 32, 1455–1461 (1999).
[CrossRef]

1998 (2)

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B. 15, 1381–1386 (1998).
[CrossRef]

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[CrossRef]

1997 (2)

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[CrossRef]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

1996 (2)

M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
[CrossRef] [PubMed]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh cattering regime,” Opt. Commun.  124, 529–541 (1996).

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particle from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

1994 (2)

S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
[CrossRef] [PubMed]

M. W. Beijerbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beam produced with a spiral phaseplate,” Opt. Commun. 112. 321–327 (1994).
[CrossRef]

1993 (1)

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astignmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

1972 (1)

D. Pohl, “Operation of a Ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Ser. A 253, pp. 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, pp. 358–379 (1959).
[CrossRef]

Allen, L.

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astignmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh cattering regime,” Opt. Commun.  124, 529–541 (1996).

Beijerbergen, M. W.

M. W. Beijerbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beam produced with a spiral phaseplate,” Opt. Commun. 112. 321–327 (1994).
[CrossRef]

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astignmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Biss, D. P.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

brown, T. G.

D. P. Biss and T. G. brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9, 490–497 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-10-490.
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Optics Express 7, 77–87 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-77.
[CrossRef] [PubMed]

Coerwinkel, R. P. C.

M. W. Beijerbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beam produced with a spiral phaseplate,” Opt. Commun. 112. 321–327 (1994).
[CrossRef]

Courtial, J.

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[CrossRef]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

der Veen, H. E. L. O. van

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astignmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Dholakia, K.

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[CrossRef]

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light- theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light- theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Esarey, E.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[CrossRef]

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particle from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Friesem, A. A.

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light- theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Hafizi, B.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[CrossRef]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh cattering regime,” Opt. Commun.  124, 529–541 (1996).

S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
[CrossRef] [PubMed]

Hasman, E.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particle from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particle from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Helseth, L. E.

L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens system,” Opt. Commun. 191, 161–172 (2001).
[CrossRef]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Kano, H.

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B. 15, 1381–1386 (1998).
[CrossRef]

Kawata, S.

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B. 15, 1381–1386 (1998).
[CrossRef]

Kristensen, M.

M. W. Beijerbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beam produced with a spiral phaseplate,” Opt. Commun. 112. 321–327 (1994).
[CrossRef]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Leger, James R.

Qiwen Zhan and James R. Leger, “Microellipsometer with radial symmetry,” submitted to Appl. Opt.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light- theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Mizuguchi, S.

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B. 15, 1381–1386 (1998).
[CrossRef]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D. 32, 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D. 32, 1455–1461 (1999).
[CrossRef]

Oron, R.

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Padgett, M. J.

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[CrossRef]

Pohl, D.

D. Pohl, “Operation of a Ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light- theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, pp. 358–379 (1959).
[CrossRef]

Robertson, D. A.

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[CrossRef]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particle from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Sato, S.

Schadt, M.

Schuster, K.

K. Schuster, “Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement,” US patent 6191880 B1 (2001).

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Sprangle, P.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[CrossRef]

Stalder, M.

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

Waseda, Y.

Woerdman, J. P.

M. W. Beijerbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beam produced with a spiral phaseplate,” Opt. Commun. 112. 321–327 (1994).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astignmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, pp. 358–379 (1959).
[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Ser. A 253, pp. 349–357 (1959).
[CrossRef]

Youngworth, K. S.

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Optics Express 7, 77–87 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-77.
[CrossRef] [PubMed]

Zhan, Qiwen

Qiwen Zhan and James R. Leger, “Microellipsometer with radial symmetry,” submitted to Appl. Opt.

Appl. Phys. B (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light- theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

D. Pohl, “Operation of a Ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

J. Opt. Soc. Am. B. (1)

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B. 15, 1381–1386 (1998).
[CrossRef]

J. Phys. D. (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D. 32, 1455–1461 (1999).
[CrossRef]

Opt. Commun. (5)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000).
[CrossRef]

L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens system,” Opt. Commun. 191, 161–172 (2001).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astignmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[CrossRef]

M. W. Beijerbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beam produced with a spiral phaseplate,” Opt. Commun. 112. 321–327 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Optics Express (1)

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Optics Express 7, 77–87 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-77.
[CrossRef] [PubMed]

Phys. Rev. E (1)

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[CrossRef]

Phys. Rev. Lett. (3)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particle from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, “Rotational frequency shift of a light beam,” Phys. Rev. Lett. 81, 4828–4830 (1998).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, pp. 358–379 (1959).
[CrossRef]

Proc. R. Soc. Ser. A (1)

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Ser. A 253, pp. 349–357 (1959).
[CrossRef]

Other (4)

Min Gu (editor), Advanced optical imaging theory, 75 (Springer-Verlag, New York, 1999)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh cattering regime,” Opt. Commun.  124, 529–541 (1996).

Qiwen Zhan and James R. Leger, “Microellipsometer with radial symmetry,” submitted to Appl. Opt.

K. Schuster, “Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement,” US patent 6191880 B1 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Generalized cylindrical vector beam with ϕ0 rotation from the purely radially polarization.

Fig. 2.
Fig. 2.

A polarization rotator consisting of two half-wave plates. ∆ϕ is the angle between the fast axes of the two half-wave plates.

Fig. 3
Fig. 3

Focusing of a cylindrical vector beam. In the diagram, f is the focal length of the objective lens. Q(r, φ) is an observation point in the focal plane.

Fig.4
Fig.4

Intensity distribution at focal plane for radially polarized beam.

Fig.5
Fig.5

Intensity distribution in the vicinity of focus for radially polarized beam.

Fig.6
Fig.6

Intensity distribution at the focal plane for an azimuthally polarized beam. The focal field only has an azimuthal component. The radial and longitudinal components are zero.

Fig. 7
Fig. 7

Total intensity distributions in the vicinity of focus for azimuthally polarized beam.

Fig.8
Fig.8

Intensity distribution at focal plane for ϕ0=24°. Flattop focus is obtained.

Fig. 9
Fig. 9

Total intensity distribution in the vicinity of focus for ϕ0=24°.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ( r , φ ) = P [ cos ϕ 0 e r + sin ϕ 0 e φ ]
T = ( cos ( 2 Δ ϕ ) sin ( 2 Δ ϕ ) sin ( 2 Δ ϕ ) cos ( 2 Δ ϕ ) ) = R ( 2 Δ ϕ )
E ( r , φ , z ) = E r e r + E z e z + E φ e φ
E r ( r , φ , z ) = A cos ϕ 0 0 θ max cos 1 / 2 ( θ ) P ( θ ) sin θ cos θ J 1 ( k r sin θ ) e i k z cos θ d θ
E z ( r , φ , z ) = i A cos ϕ 0 0 θ max cos 1 / 2 ( θ ) P ( θ ) sin 2 θ J 0 ( k r sin θ ) e i k z cos θ d θ
E φ ( r , φ , z ) = A sin ϕ 0 0 θ max cos 1 / 2 ( θ ) P ( θ ) J 1 ( k r sin θ ) e i k z cos θ d θ
P ( θ ) = { 1 if sin 1 ( 0.1 ) θ sin 1 ( NA ) 0 otherwise
F = 2 π R 3 ε 1 c ( ε 2 ε 1 ε 2 + 2 ε 1 ) I

Metrics