Abstract

We present for the first time experimental images of fluorescence lifetime distribution using model-based reconstruction. The lifetime distribution in our phantom experiments was realized through using an oxygen-sensitive dye [Sn(IV)Chlorin-e6-Cl2-3Na (SCCN)] whose lifetime varied with the oxygen concentration provided in the target and background media. The fluorescence tomographic data was obtained using our multi-channel frequency-domain system. Spatial maps of fluorescence lifetime were achieved with a finite element based reconstruction algorithm.

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue

Troy O. McBride, Brian W. Pogue, Ellen D. Gerety, Steven B. Poplack, Ulf L. Österberg, and Keith D. Paulsen
Appl. Opt. 38(25) 5480-5490 (1999)

Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results

Hamid Dehghani, Brian W. Pogue, Steven P. Poplack, and Keith D. Paulsen
Appl. Opt. 42(1) 135-145 (2003)

References

  • View by:
  • |
  • |
  • |

  1. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
    [Crossref]
  2. J. Chang, H.L. Graber, and R.L. Barbour, “Luminescence optical tomography of dense scattering media,” JOSA A 14, 288–299(1997).
    [Crossref] [PubMed]
  3. D. Y. Paithankar, A.U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
    [Crossref] [PubMed]
  4. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
    [Crossref]
  5. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
    [Crossref] [PubMed]
  6. J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
    [Crossref] [PubMed]
  7. V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” PNAS 97, 2767–2772(2000).
    [Crossref] [PubMed]
  8. P. Hohenberger, C. Felgner, W. Haensch, and P. M. Schlag “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Research and Treatment 48, 97–106 (1998).
    [Crossref] [PubMed]
  9. E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,” Analytical Chemistry 63, 337–342 (1991).
    [Crossref]
  10. D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O’Leary, “Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensors,” Analytical Chemistry 67, 4112–4117 (1995).
    [Crossref]
  11. S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophysical Journal 70, 1609–1617 (1996).
    [Crossref] [PubMed]
  12. F. N. Castellano and J. R. Lakowicz, “A water-soluble luminescence oxygen sensor,” Photochemistry and Photobiology 67, 179–183 (1998).
    [Crossref] [PubMed]
  13. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).
  14. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895(2001).
    [Crossref]
  15. M. Eppstein, D. Hawrysz, A. Godavarty, and E. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
    [Crossref] [PubMed]
  16. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
    [Crossref] [PubMed]
  17. N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000).
    [Crossref]
  18. Y. Yang, N. Iftimia, Y. Xu, and H. Jiang, “Frequency-domain fluorescent diffusion tomogrphy of turbid media and in vivo tissues,” SPIE 4250, 537–545 (2001).
    [Crossref]
  19. D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
    [Crossref]

2002 (2)

M. Eppstein, D. Hawrysz, A. Godavarty, and E. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

2001 (2)

Y. Yang, N. Iftimia, Y. Xu, and H. Jiang, “Frequency-domain fluorescent diffusion tomogrphy of turbid media and in vivo tissues,” SPIE 4250, 537–545 (2001).
[Crossref]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895(2001).
[Crossref]

2000 (2)

N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000).
[Crossref]

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” PNAS 97, 2767–2772(2000).
[Crossref] [PubMed]

1999 (1)

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
[Crossref] [PubMed]

1998 (3)

P. Hohenberger, C. Felgner, W. Haensch, and P. M. Schlag “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Research and Treatment 48, 97–106 (1998).
[Crossref] [PubMed]

H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
[Crossref]

F. N. Castellano and J. R. Lakowicz, “A water-soluble luminescence oxygen sensor,” Photochemistry and Photobiology 67, 179–183 (1998).
[Crossref] [PubMed]

1997 (2)

1996 (4)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref] [PubMed]

M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[Crossref]

S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophysical Journal 70, 1609–1617 (1996).
[Crossref] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[Crossref] [PubMed]

1995 (1)

D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O’Leary, “Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensors,” Analytical Chemistry 67, 4112–4117 (1995).
[Crossref]

1991 (1)

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,” Analytical Chemistry 63, 337–342 (1991).
[Crossref]

Bacon, J. R.

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,” Analytical Chemistry 63, 337–342 (1991).
[Crossref]

Barbour, R.L.

J. Chang, H.L. Graber, and R.L. Barbour, “Luminescence optical tomography of dense scattering media,” JOSA A 14, 288–299(1997).
[Crossref] [PubMed]

Boas, D. A.

Carraway, E. R.

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,” Analytical Chemistry 63, 337–342 (1991).
[Crossref]

Castellano, F. N.

F. N. Castellano and J. R. Lakowicz, “A water-soluble luminescence oxygen sensor,” Photochemistry and Photobiology 67, 179–183 (1998).
[Crossref] [PubMed]

Chance, B.

Chang, J.

J. Chang, H.L. Graber, and R.L. Barbour, “Luminescence optical tomography of dense scattering media,” JOSA A 14, 288–299(1997).
[Crossref] [PubMed]

Chen, A.U.

Cornell, J.

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
[Crossref] [PubMed]

Davis, D.

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

DeGraff, B. A.

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,” Analytical Chemistry 63, 337–342 (1991).
[Crossref]

Demas, J. N.

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,” Analytical Chemistry 63, 337–342 (1991).
[Crossref]

Elson, D.

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

Eppstein, M.

M. Eppstein, D. Hawrysz, A. Godavarty, and E. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

Evans, S. M.

S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophysical Journal 70, 1609–1617 (1996).
[Crossref] [PubMed]

Felgner, C.

P. Hohenberger, C. Felgner, W. Haensch, and P. M. Schlag “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Research and Treatment 48, 97–106 (1998).
[Crossref] [PubMed]

French, P.

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

Godavarty, A.

M. Eppstein, D. Hawrysz, A. Godavarty, and E. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

Graber, H.L.

J. Chang, H.L. Graber, and R.L. Barbour, “Luminescence optical tomography of dense scattering media,” JOSA A 14, 288–299(1997).
[Crossref] [PubMed]

Haensch, W.

P. Hohenberger, C. Felgner, W. Haensch, and P. M. Schlag “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Research and Treatment 48, 97–106 (1998).
[Crossref] [PubMed]

Hawrysz, D.

M. Eppstein, D. Hawrysz, A. Godavarty, and E. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

Hohenberger, P.

P. Hohenberger, C. Felgner, W. Haensch, and P. M. Schlag “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Research and Treatment 48, 97–106 (1998).
[Crossref] [PubMed]

Iftimia, N.

Y. Yang, N. Iftimia, Y. Xu, and H. Jiang, “Frequency-domain fluorescent diffusion tomogrphy of turbid media and in vivo tissues,” SPIE 4250, 537–545 (2001).
[Crossref]

N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000).
[Crossref]

Jenkins, W. T.

S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophysical Journal 70, 1609–1617 (1996).
[Crossref] [PubMed]

Jiang, H.

Koch, C.

S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophysical Journal 70, 1609–1617 (1996).
[Crossref] [PubMed]

Lakowicz, J. R.

F. N. Castellano and J. R. Lakowicz, “A water-soluble luminescence oxygen sensor,” Photochemistry and Photobiology 67, 179–183 (1998).
[Crossref] [PubMed]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).

Lever, J.

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

Li, X. D.

Lo, L.

S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophysical Journal 70, 1609–1617 (1996).
[Crossref] [PubMed]

Mayer, R.

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
[Crossref] [PubMed]

Ntziachristos, V.

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895(2001).
[Crossref]

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” PNAS 97, 2767–2772(2000).
[Crossref] [PubMed]

O’Leary, M. A.

O’Leary, P.

D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O’Leary, “Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensors,” Analytical Chemistry 67, 4112–4117 (1995).
[Crossref]

Paithankar, D. Y.

Papkovsky, D. B.

D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O’Leary, “Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensors,” Analytical Chemistry 67, 4112–4117 (1995).
[Crossref]

Patterson, M. S.

Phillips, D.

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

Pogue, B. W.

Ponomarev, G. V.

D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O’Leary, “Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensors,” Analytical Chemistry 67, 4112–4117 (1995).
[Crossref]

Reynolds, J.

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
[Crossref] [PubMed]

Richards-Kortum, R.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref] [PubMed]

Schlag, P. M.

P. Hohenberger, C. Felgner, W. Haensch, and P. M. Schlag “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Research and Treatment 48, 97–106 (1998).
[Crossref] [PubMed]

Schnall, M.

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” PNAS 97, 2767–2772(2000).
[Crossref] [PubMed]

Sevick-Muraca, E.

M. Eppstein, D. Hawrysz, A. Godavarty, and E. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
[Crossref] [PubMed]

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

Siegel, J.

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

Snyder, P.

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
[Crossref] [PubMed]

Suhling, K.

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

Thompson, A.

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
[Crossref] [PubMed]

Trettnak, W.

D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O’Leary, “Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensors,” Analytical Chemistry 67, 4112–4117 (1995).
[Crossref]

Troy, T.

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
[Crossref] [PubMed]

Vinogradov, S. A.

S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophysical Journal 70, 1609–1617 (1996).
[Crossref] [PubMed]

Wallace, A.

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

Waters, D.

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
[Crossref] [PubMed]

Webb, S.

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

Weissleder, R.

Wilson, D. F.

S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophysical Journal 70, 1609–1617 (1996).
[Crossref] [PubMed]

Xu, Y.

Y. Yang, N. Iftimia, Y. Xu, and H. Jiang, “Frequency-domain fluorescent diffusion tomogrphy of turbid media and in vivo tissues,” SPIE 4250, 537–545 (2001).
[Crossref]

Yang, Y.

Y. Yang, N. Iftimia, Y. Xu, and H. Jiang, “Frequency-domain fluorescent diffusion tomogrphy of turbid media and in vivo tissues,” SPIE 4250, 537–545 (2001).
[Crossref]

Yodh, A.

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” PNAS 97, 2767–2772(2000).
[Crossref] [PubMed]

Yodh, A. G.

Analytical Chemistry (2)

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,” Analytical Chemistry 63, 337–342 (1991).
[Crossref]

D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O’Leary, “Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensors,” Analytical Chemistry 67, 4112–4117 (1995).
[Crossref]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[Crossref] [PubMed]

Appl. Opt. (4)

Biophysical Journal (1)

S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophysical Journal 70, 1609–1617 (1996).
[Crossref] [PubMed]

Breast Cancer Research and Treatment (1)

P. Hohenberger, C. Felgner, W. Haensch, and P. M. Schlag “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Research and Treatment 48, 97–106 (1998).
[Crossref] [PubMed]

JOSA A (1)

J. Chang, H.L. Graber, and R.L. Barbour, “Luminescence optical tomography of dense scattering media,” JOSA A 14, 288–299(1997).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Photonics News (1)

D. Elson, S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, “Biomedical applications of fluorescence lifetime imaging,” Opt. Photonics News 13, 27–32 (November 2002).
[Crossref]

Photochem. Photobiol. (1)

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, and E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94(1999).
[Crossref] [PubMed]

Photochemistry and Photobiology (1)

F. N. Castellano and J. R. Lakowicz, “A water-soluble luminescence oxygen sensor,” Photochemistry and Photobiology 67, 179–183 (1998).
[Crossref] [PubMed]

PNAS (2)

V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” PNAS 97, 2767–2772(2000).
[Crossref] [PubMed]

M. Eppstein, D. Hawrysz, A. Godavarty, and E. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

SPIE (1)

Y. Yang, N. Iftimia, Y. Xu, and H. Jiang, “Frequency-domain fluorescent diffusion tomogrphy of turbid media and in vivo tissues,” SPIE 4250, 537–545 (2001).
[Crossref]

Other (1)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) and (b) Experimental geometries under study, with an off-centered target 7mm away from the boundary (a) and an off-centered target 9 mm away from the boundary (b). (c) Gas delivery system.

Fig. 2.
Fig. 2.

(a) Reconstructed lifetime image with lowered oxygen content in the target (3 o’clock). The axes (left and bottom) illustrate the spatial scale, in millimeters, whereas the color scale (right) records the fluorescence lifetime, in nanoseconds. (b) Lifetime profile along a horizontal cut line through the centers of both the target and background.

Fig. 3.
Fig. 3.

(a) Reconstructed lifetime image with lowered oxygen content in the target (12 o’clock). The axes (left and bottom) illustrate the spatial scale, in millimeters, whereas the color scale (right) records the fluorescence lifetime, in nanoseconds. (b) Lifetime profile along a horizontal cut line through the center of the target.

Fig. 4.
Fig. 4.

Reconstructed lifetime image with homogeneous oxygen content in the target and background. The axes (left and bottom) illustrate the spatial scale, in millimeters, whereas the color scale (right) records the fluorescence lifetime, in nanoseconds.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

· [ D x ( r ) Φ x r ω ] [ μ a x ( r ) c ] Φ x r ω = S r ω
· [ D m ( r ) Φ m r ω ] [ μ a m ( r ) c ] Φ m r ω = η ( r ) μ a x m Φ x r ω 1 + iωτ ( r ) 1 + ω 2 τ ( r ) 2
[ A x , m ] { Φ x , m } = { b x , m }
[ A x , m ] { Φ x , m / χ } = { b x , m / χ } [ A x , m / χ ] { Φ x , m }
( x , m T x , m + λI ) Δχ = x , m T ( Φ x , m o Φ x , m c )

Metrics