Abstract

We present for the first time experimental images of fluorescence lifetime distribution using model-based reconstruction. The lifetime distribution in our phantom experiments was realized through using an oxygen-sensitive dye [Sn(IV)Chlorin-e6-Cl2-3Na (SCCN)] whose lifetime varied with the oxygen concentration provided in the target and background media. The fluorescence tomographic data was obtained using our multi-channel frequency-domain system. Spatial maps of fluorescence lifetime were achieved with a finite element based reconstruction algorithm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. A. O�??Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, �??Fluorescence lifetime imaging in turbid media,�?? Opt. Lett. 21, 158-160 (1996).
    [CrossRef]
  2. J. Chang, H.L. Graber, R.L. Barbour, �??Luminescence optical tomography of dense scattering media,�?? J. Opt. Soc. Am. A 14, 288-299(1997).
    [CrossRef] [PubMed]
  3. D. Y. Paithankar, A.U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, �??Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,�?? Appl. Opt. 36, 2260-2272 (1997).
    [CrossRef] [PubMed]
  4. H. Jiang, �??Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,�?? Appl. Opt. 37, 5337-5343 (1998).
    [CrossRef]
  5. R. Richards-Kortum, E. Sevick-Muraca, �??Quantitative optical spectroscopy for tissue diagnosis,�?? Annu. Rev. Phys. Chem. 47, 555-606 (1996).
    [CrossRef] [PubMed]
  6. J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, E. Sevick-Muraca, �??Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,�?? Photochem. Photobiol. 70, 87-94(1999).
    [CrossRef] [PubMed]
  7. V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, �??Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,�?? PNAS 97, 2767-2772(2000).
    [CrossRef] [PubMed]
  8. P. Hohenberger, C. Felgner, W. Haensch, and P. M. Schlag �??Tumor oxygenation correlates with molecular growth determinants in breast cancer,�?? Breast Cancer Research and Treatment 48, 97-106 (1998).
    [CrossRef] [PubMed]
  9. E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, �??Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,�?? Anal. Chem. 63, 337-342 (1991).
    [CrossRef]
  10. D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O�??Leary, �??Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensors,�?? Anal. Chem. 67, 4112-4117 (1995).
    [CrossRef]
  11. S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, �??Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,�?? Biophys. J. 70, 1609-1617 (1996).
    [CrossRef] [PubMed]
  12. F. N. Castellano and J. R. Lakowicz, �??A water-soluble luminescence oxygen sensor,�?? Photochem. Photobiol. 67, 179-183 (1998).
    [CrossRef] [PubMed]
  13. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).
  14. V. Ntziachristos, R. Weissleder, �??Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,�?? Opt. Lett. 26, 893-895(2001).
    [CrossRef]
  15. M. Eppstein, D. Hawrysz, A. Godavarty, E. Sevick-Muraca, �??Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,�?? PNAS 99, 9619-9624 (2002).
    [CrossRef] [PubMed]
  16. X. D. Li, M. A. O�??Leary, D. A. Boas, B. Chance, and A. G. Yodh, �??Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,�?? Appl. Opt. 35, 3746-3758 (1996).
    [CrossRef] [PubMed]
  17. N. Iftimia and H. Jiang, �??Quantitative optical image reconstruction of turbid media by use of direct-current measurements,�?? Appl. Opt. 39, 5256-5261 (2000).
    [CrossRef]
  18. Y. Yang, N. Iftimia, Y. Xu, and H. Jiang, �??Frequency-domain fluorescent diffusion tomogrphy of turbid media and in vivo tissues,�?? SPIE 4250, 537-545 (2001).
    [CrossRef]
  19. D. Elson , S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, �??Biomedical applications of fluorescence lifetime imaging,�?? Opt. Photonics News 13, 27-32 (November 2002).
    [CrossRef]

Anal. Chem. (2)

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, �??Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,�?? Anal. Chem. 63, 337-342 (1991).
[CrossRef]

D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O�??Leary, �??Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensors,�?? Anal. Chem. 67, 4112-4117 (1995).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum, E. Sevick-Muraca, �??Quantitative optical spectroscopy for tissue diagnosis,�?? Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef] [PubMed]

Appl. Opt. (4)

Biophys. J. (1)

S. A. Vinogradov, L. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, �??Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,�?? Biophys. J. 70, 1609-1617 (1996).
[CrossRef] [PubMed]

Breast Cancer Research and Treatment (1)

P. Hohenberger, C. Felgner, W. Haensch, and P. M. Schlag �??Tumor oxygenation correlates with molecular growth determinants in breast cancer,�?? Breast Cancer Research and Treatment 48, 97-106 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Opt. Photon. News (1)

D. Elson , S. Webb, J. Siegel, K. Suhling, D. Davis, J. Lever, D. Phillips, A. Wallace, and P. French, �??Biomedical applications of fluorescence lifetime imaging,�?? Opt. Photonics News 13, 27-32 (November 2002).
[CrossRef]

Photochem. Photobiol. (2)

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, J. Cornell, P. Snyder, E. Sevick-Muraca, �??Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,�?? Photochem. Photobiol. 70, 87-94(1999).
[CrossRef] [PubMed]

F. N. Castellano and J. R. Lakowicz, �??A water-soluble luminescence oxygen sensor,�?? Photochem. Photobiol. 67, 179-183 (1998).
[CrossRef] [PubMed]

PNAS (2)

V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, �??Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,�?? PNAS 97, 2767-2772(2000).
[CrossRef] [PubMed]

M. Eppstein, D. Hawrysz, A. Godavarty, E. Sevick-Muraca, �??Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,�?? PNAS 99, 9619-9624 (2002).
[CrossRef] [PubMed]

SPIE (1)

Y. Yang, N. Iftimia, Y. Xu, and H. Jiang, �??Frequency-domain fluorescent diffusion tomogrphy of turbid media and in vivo tissues,�?? SPIE 4250, 537-545 (2001).
[CrossRef]

Other (1)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) and (b) Experimental geometries under study, with an off-centered target 7mm away from the boundary (a) and an off-centered target 9 mm away from the boundary (b). (c) Gas delivery system.

Fig. 2.
Fig. 2.

(a) Reconstructed lifetime image with lowered oxygen content in the target (3 o’clock). The axes (left and bottom) illustrate the spatial scale, in millimeters, whereas the color scale (right) records the fluorescence lifetime, in nanoseconds. (b) Lifetime profile along a horizontal cut line through the centers of both the target and background.

Fig. 3.
Fig. 3.

(a) Reconstructed lifetime image with lowered oxygen content in the target (12 o’clock). The axes (left and bottom) illustrate the spatial scale, in millimeters, whereas the color scale (right) records the fluorescence lifetime, in nanoseconds. (b) Lifetime profile along a horizontal cut line through the center of the target.

Fig. 4.
Fig. 4.

Reconstructed lifetime image with homogeneous oxygen content in the target and background. The axes (left and bottom) illustrate the spatial scale, in millimeters, whereas the color scale (right) records the fluorescence lifetime, in nanoseconds.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

· [ D x ( r ) Φ x r ω ] [ μ a x ( r ) c ] Φ x r ω = S r ω
· [ D m ( r ) Φ m r ω ] [ μ a m ( r ) c ] Φ m r ω = η ( r ) μ a x m Φ x r ω 1 + iωτ ( r ) 1 + ω 2 τ ( r ) 2
[ A x , m ] { Φ x , m } = { b x , m }
[ A x , m ] { Φ x , m / χ } = { b x , m / χ } [ A x , m / χ ] { Φ x , m }
( x , m T x , m + λI ) Δχ = x , m T ( Φ x , m o Φ x , m c )

Metrics