Abstract

We introduce a quantum key distribution scheme based on four-photon coincidence measurements. This scheme offers a much higher degree of security than current quantum key distribution methods and minimizes problems due to photon losses and dark counts.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. H. Bennett and G. Brassard, �??Quantum Cryptography: Public Key Distribution and Coin Tossing,�?? in Proc. of IEEE Inter. Conf. on Computers, Systems and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175�??179.
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, �??Experimental quantum cryptography,�?? J. Cryptol. 5, 3�??28 (1992).
    [CrossRef]
  3. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, �??Quantum cryptography using entangled photons in energy�??time Bell states,�?? Phys. Rev. Lett. 84, 4737 (2000).
    [CrossRef] [PubMed]
  4. A. K. Ekert, J. G. Rarity, P. R. Tapster and G. M. Palma, �??Practical quantum cryptography based on two�??photon interferometry,�?? Phys. Rev. Lett. 69, 1293�??1295 (1992).
    [CrossRef] [PubMed]
  5. J. D. Franson, �??Bell inequality for position and time,�?? Phys. Rev. Lett. 62, 2205�??2208 (1989).
    [CrossRef] [PubMed]
  6. G. Brassard, N. Lutkenhaus, T. Mor and B. C. Sanders, �??Limitations on Practical Quantum Cryptography,�?? Phys. Rev. Lett. 85, 1330�??1333 (2000).
    [CrossRef] [PubMed]
  7. S. J. D. Phoenix, S. M. Barnett and A. Chefles, �??Three-state quantum cryptography,�?? J. Mod. Opt. 47, 507�??516 (2000).
  8. H. Bechmann�??Pasquinucci and A. Peres, �??Quantum cryptography with 3�??state systems,�?? Phys. Rev. Lett. 85, 3313�??3316 (2000).
    [CrossRef] [PubMed]
  9. A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, �??Polarization state of a biphoton:Quantum ternary logic,�?? Phys. Rev. A 60, R4209�??R4212 (1999).
    [CrossRef]
  10. Y. H. Shih and M. H. Rubin, �??Four-Photon Interference Experiment for the Testing of the Greenberger-Horne-Zeilinger Theorem,�?? Phys. Lett. A 204, 16�??22 (1995).
  11. T. B. Pittman, �??On the Use of Double Entanglement in Four-Photon Experiments,�?? Phys. Lett. A 204, 193�??197 (1995).
    [CrossRef]
  12. D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter and A. Zeilinger, �??Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,�?? Phys. Rev. Lett. 82, 1345�??1349 (1999).
    [CrossRef]
  13. J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs and A. Zeilinger, �??Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,�?? Phys. Rev. Lett. 86, 4435�??4438 (2001).
    [CrossRef] [PubMed]
  14. Z. Zhao, J. -W. Pan, and M. S. Zhan, �??Practical Scheme for Entanglement Concentration,�?? Phys. Rev. A 64 014301 (2001).
    [CrossRef]
  15. H. Weinfurter and M. Zukowski, �??Four-Photon Entanglement From Down-Conversion,�?? Phys. Rev. A 64, 010102(R) (2001).
    [CrossRef]
  16. F. Verstraete, J. Dehaene, B. De Moor and H. Verschelde, �??Four Qubits Can Be Entangled in Nine Di.erent Ways,�?? Phys. Rev. A 65, 052112 (2002).
    [CrossRef]
  17. S. P. Tewari and P. Hariharan, �??Generation of entangled 4-photon states by parametric downconversion,�?? J. Mod. Opt. 44, 543�??553 (1997).
    [CrossRef]
  18. P. Hariharan, J. Samuel and S. Sinha �??Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations,�?? J. Opt. B: Quantum Semiclass. 1, 199�??205 (1999).
    [CrossRef]
  19. P. Hariharan and B. C. Sanders, �??Cavity-enhanced parametric down-conversion as a source of correlated photons,�?? J. Mod. Opt. 47, 1739�??1744 (2000).
  20. M. Oberparleiter and H. Weinfurter, �??Cavity-enhanced generation of polarization-entangled photon pairs,�?? Opt. Commun. 183, 133�??137 (2000).
    [CrossRef]
  21. P. Hariharan, �??Simple, high-efficiency, single-photon trap detectors,�?? J. Opt. B: Quantum Semiclass. 1, 522�??523 (1999).
    [CrossRef]

J. Cryptol. (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, �??Experimental quantum cryptography,�?? J. Cryptol. 5, 3�??28 (1992).
[CrossRef]

J. Mod. Opt. (2)

S. P. Tewari and P. Hariharan, �??Generation of entangled 4-photon states by parametric downconversion,�?? J. Mod. Opt. 44, 543�??553 (1997).
[CrossRef]

P. Hariharan and B. C. Sanders, �??Cavity-enhanced parametric down-conversion as a source of correlated photons,�?? J. Mod. Opt. 47, 1739�??1744 (2000).

J. Opt. B (1)

P. Hariharan, �??Simple, high-efficiency, single-photon trap detectors,�?? J. Opt. B: Quantum Semiclass. 1, 522�??523 (1999).
[CrossRef]

J. Opt. B: Quantum Semiclass. (1)

P. Hariharan, J. Samuel and S. Sinha �??Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations,�?? J. Opt. B: Quantum Semiclass. 1, 199�??205 (1999).
[CrossRef]

Opt. Commun. (1)

M. Oberparleiter and H. Weinfurter, �??Cavity-enhanced generation of polarization-entangled photon pairs,�?? Opt. Commun. 183, 133�??137 (2000).
[CrossRef]

Phys. Lett. A (2)

Y. H. Shih and M. H. Rubin, �??Four-Photon Interference Experiment for the Testing of the Greenberger-Horne-Zeilinger Theorem,�?? Phys. Lett. A 204, 16�??22 (1995).

T. B. Pittman, �??On the Use of Double Entanglement in Four-Photon Experiments,�?? Phys. Lett. A 204, 193�??197 (1995).
[CrossRef]

Phys. Rev. A (4)

Z. Zhao, J. -W. Pan, and M. S. Zhan, �??Practical Scheme for Entanglement Concentration,�?? Phys. Rev. A 64 014301 (2001).
[CrossRef]

H. Weinfurter and M. Zukowski, �??Four-Photon Entanglement From Down-Conversion,�?? Phys. Rev. A 64, 010102(R) (2001).
[CrossRef]

F. Verstraete, J. Dehaene, B. De Moor and H. Verschelde, �??Four Qubits Can Be Entangled in Nine Di.erent Ways,�?? Phys. Rev. A 65, 052112 (2002).
[CrossRef]

A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, �??Polarization state of a biphoton:Quantum ternary logic,�?? Phys. Rev. A 60, R4209�??R4212 (1999).
[CrossRef]

Phys. Rev. Lett. (7)

H. Bechmann�??Pasquinucci and A. Peres, �??Quantum cryptography with 3�??state systems,�?? Phys. Rev. Lett. 85, 3313�??3316 (2000).
[CrossRef] [PubMed]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter and A. Zeilinger, �??Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,�?? Phys. Rev. Lett. 82, 1345�??1349 (1999).
[CrossRef]

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs and A. Zeilinger, �??Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,�?? Phys. Rev. Lett. 86, 4435�??4438 (2001).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, �??Quantum cryptography using entangled photons in energy�??time Bell states,�?? Phys. Rev. Lett. 84, 4737 (2000).
[CrossRef] [PubMed]

A. K. Ekert, J. G. Rarity, P. R. Tapster and G. M. Palma, �??Practical quantum cryptography based on two�??photon interferometry,�?? Phys. Rev. Lett. 69, 1293�??1295 (1992).
[CrossRef] [PubMed]

J. D. Franson, �??Bell inequality for position and time,�?? Phys. Rev. Lett. 62, 2205�??2208 (1989).
[CrossRef] [PubMed]

G. Brassard, N. Lutkenhaus, T. Mor and B. C. Sanders, �??Limitations on Practical Quantum Cryptography,�?? Phys. Rev. Lett. 85, 1330�??1333 (2000).
[CrossRef] [PubMed]

Three-state quantum cryptography (1)

S. J. D. Phoenix, S. M. Barnett and A. Chefles, �??Three-state quantum cryptography,�?? J. Mod. Opt. 47, 507�??516 (2000).

Other (1)

C. H. Bennett and G. Brassard, �??Quantum Cryptography: Public Key Distribution and Coin Tossing,�?? in Proc. of IEEE Inter. Conf. on Computers, Systems and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175�??179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Schematic of a system for distributing a cryptographic key using four-photon interferometry.

Tables (1)

Tables Icon

Table 1. Conversion of observations of coincidences to a binary key. The first column presents the two allowed (random) values of ΔϕA , and the third row (second column) presents these two (random) values of ΔϕB : the instances for which four-fold coincidences yield bits for the key are signified by the bit (0 or 1) chosen in those instances.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J ϕ A ϕ B = cos ( ϕ A + ϕ B ) .
P 1234 = 1 + cos Φ 2 ,
Φ = ϕ 1 + ϕ 2 + ϕ 3 + ϕ 4 ,

Metrics