Abstract

The 289 and 255nm outputs of a frequency doubled copper laser are used to remove the polymer jacket of optic fiber and write fiber Bragg gratings respectively. Our studies show that 289nm laser light is ideal for stripping the polymer jacket in a well defined manner without interacting significantly with the core of photosensitive fibers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing (Artech House, Norwood, 1999) Chap. 2.
  2. J. Albert, B. Malo, F. Bilodeau, D. C. Johnson, K. O. Hill, Y. Hibino and M. Kawachi, �??Photosensitivity in Ge-doped silica optical waveguides and fibers with 193nm light from a ArF excimer laser,�?? Opt. Lett. 19, 387-389 (1994).
    [PubMed]
  3. C. G. Askins, T. -E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky and E. J. Friebele, �??Fiber Bragg reflectors prepared by a single excimer pulse,�?? Opt. Lett. 17, 833-836 (1992).
    [CrossRef] [PubMed]
  4. G. Meltz, W. W. Morey andW. H. Glenn, �??Formation of Bragg gratings in optical fibers by a transverse holographic method,�?? Opt. Lett. 14, 823-825 (1989).
    [CrossRef] [PubMed]
  5. C. J. Paddison, J. M. Dawes, D. J. W. Brown, M. J. Withford, R. I. Trickett and P. A. Krug, �??Multiple fiber gratings fabricated using frequency doubled copper vapour lasers,�?? Electron. Lett. 34, 2407-2408 (1998).
    [CrossRef]
  6. J. R. Armitage, �??Fiber Bragg Reflectors written at 262nm using a frequency quadrupled diode pumped Nd3+:YLF laser,�?? Electron. Lett. 29, 1181-1183 (1993).
    [CrossRef]
  7. S. E. Kanellopoulos, V. A. Handerek and A. J. Rogers, �??Photoinduced polarisation couplers in elliptical core optical fibers written using 535 and 266nm sources,�?? Electron. Lett. 28, 1558-1560 (1992).
    [CrossRef]
  8. W. Griffioen, �??Strippability of optical fibers,�?? in Proceedings of 11th Annual Conference on European Fiber Optic Communications and Networks, (European Institute of Communications and Networks, Geneva) 239-244 (1993).
  9. D. S. Starodubov, V. Grubsky and J. Feinberg, �??Efficient Bragg grating fabrication in a fiber through its polymer jacket using near-UV light,�?? Electron. Lett. 33, 1331-1333 (1997).
    [CrossRef]
  10. D. S. Starodubov, V. Grubsky and J. Feinberg, �??Ultrastrong fiber gratings and their applications,�?? in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 178-185 (1999).
    [CrossRef]
  11. R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco and P. J. Chandonnet, �??Highly reflective fiber Bragg gratings written through a vinyl ether coating,�?? IEEE Photon. Tech. Lett. 11, 833-835 (1999).
    [CrossRef]
  12. D. C. Psaila and H. G. Inglis, �??Packaging of optical fiber Bragg gratings,�?? in Proceedings of 51st Electronic Components and Technology Conference, (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 439-443.
  13. F. Barnier, P. E. Dyer, P. Monk, H. V. Snelling and H. Rourke, �??Fiber optic jacket removal by pulsed laser ablation,�?? J. Phys. D: Appl. Phys. 33, 757-759 (2000).
    [CrossRef]
  14. T. E. Dimmick, G. Kakarantzas, T. A. Birks and P. St. J. Russell, �??Carbon dioxide laser fabrication of fused fiber couplers and tapers,�?? Appl. Opt. 38, 6845-6848 (1999).
    [CrossRef]
  15. D. W. Coutts and J. A. Piper, �??One watt average power by second harmonic and sum frequency generation from a single medium scale copper vapour laser,�?? IEEE. Quantum Electron. 28, 1761-1764 (1992).
    [CrossRef]
  16. P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie and B. Poumellec, �??Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,�?? Opt. Commun. 113, 176-192 (1994).
    [CrossRef]
  17. A. Lee, M. J. Withford, J. M. Dawes, �??Optical fiber photosensitivity and the dynamics of fiber Bragg grating growth,�?? in Proceedings of Australasian Conference on Optics and Laser Spectroscopy, (Australian Optical Society) 87 (2001).
  18. E. K. Illy, D. J. W. Brown, M. J. Withford and J. A. Piper, �??Optimisation of trepanning strategies for micromachining polymers with high pulse rate UV lasers,�?? Proc. Of SPIE: High power lasers in manufacturing, X. Chen et al (eds) 3888, 608-616 (2000).
    [CrossRef]
  19. G. Ogura, �??Laser stripping of optical fibers opens up new applications,�?? Laser Focus World (Penwell Publishing) 37, 169-176 (2001).
  20. See for example Resostrip_ at <a href="http://www.resonetics.com/Telecom/reso.htm">http://www.resonetics.com/Telecom/reso.htm</a>.

Appl. Opt. (1)

Electron. Lett. (4)

C. J. Paddison, J. M. Dawes, D. J. W. Brown, M. J. Withford, R. I. Trickett and P. A. Krug, �??Multiple fiber gratings fabricated using frequency doubled copper vapour lasers,�?? Electron. Lett. 34, 2407-2408 (1998).
[CrossRef]

J. R. Armitage, �??Fiber Bragg Reflectors written at 262nm using a frequency quadrupled diode pumped Nd3+:YLF laser,�?? Electron. Lett. 29, 1181-1183 (1993).
[CrossRef]

S. E. Kanellopoulos, V. A. Handerek and A. J. Rogers, �??Photoinduced polarisation couplers in elliptical core optical fibers written using 535 and 266nm sources,�?? Electron. Lett. 28, 1558-1560 (1992).
[CrossRef]

D. S. Starodubov, V. Grubsky and J. Feinberg, �??Efficient Bragg grating fabrication in a fiber through its polymer jacket using near-UV light,�?? Electron. Lett. 33, 1331-1333 (1997).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco and P. J. Chandonnet, �??Highly reflective fiber Bragg gratings written through a vinyl ether coating,�?? IEEE Photon. Tech. Lett. 11, 833-835 (1999).
[CrossRef]

IEEE. Quantum Electron. (1)

D. W. Coutts and J. A. Piper, �??One watt average power by second harmonic and sum frequency generation from a single medium scale copper vapour laser,�?? IEEE. Quantum Electron. 28, 1761-1764 (1992).
[CrossRef]

J. Phys. D (1)

F. Barnier, P. E. Dyer, P. Monk, H. V. Snelling and H. Rourke, �??Fiber optic jacket removal by pulsed laser ablation,�?? J. Phys. D: Appl. Phys. 33, 757-759 (2000).
[CrossRef]

Laser Focus World (1)

G. Ogura, �??Laser stripping of optical fibers opens up new applications,�?? Laser Focus World (Penwell Publishing) 37, 169-176 (2001).

Opt. Commun. (1)

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie and B. Poumellec, �??Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,�?? Opt. Commun. 113, 176-192 (1994).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (2)

D. S. Starodubov, V. Grubsky and J. Feinberg, �??Ultrastrong fiber gratings and their applications,�?? in Optical Fiber Reliability and Testing, Proc. SPIE 3848, 178-185 (1999).
[CrossRef]

E. K. Illy, D. J. W. Brown, M. J. Withford and J. A. Piper, �??Optimisation of trepanning strategies for micromachining polymers with high pulse rate UV lasers,�?? Proc. Of SPIE: High power lasers in manufacturing, X. Chen et al (eds) 3888, 608-616 (2000).
[CrossRef]

Other (5)

D. C. Psaila and H. G. Inglis, �??Packaging of optical fiber Bragg gratings,�?? in Proceedings of 51st Electronic Components and Technology Conference, (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 439-443.

W. Griffioen, �??Strippability of optical fibers,�?? in Proceedings of 11th Annual Conference on European Fiber Optic Communications and Networks, (European Institute of Communications and Networks, Geneva) 239-244 (1993).

See for example Resostrip_ at <a href="http://www.resonetics.com/Telecom/reso.htm">http://www.resonetics.com/Telecom/reso.htm</a>.

A. Lee, M. J. Withford, J. M. Dawes, �??Optical fiber photosensitivity and the dynamics of fiber Bragg grating growth,�?? in Proceedings of Australasian Conference on Optics and Laser Spectroscopy, (Australian Optical Society) 87 (2001).

A. Othonos and K. Kalli, Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing (Artech House, Norwood, 1999) Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figs. 1 and 2.
Figs. 1 and 2.

Comparison of the growth dynamics and spectral shift of Bragg gratings written with 255 and 289nm laser light. Note that these fibers were prepared using mechanical stripping.

Fig. 3.
Fig. 3.

A 20 μm wide transverse scribe machined into the polymer jacket of an optical fiber using 289nm laser radiation.

Fig. 4.
Fig. 4.

A longitudinal “window” machined into the polymer jacket prior to writing a fiber Bragg grating.

Fig. 5.
Fig. 5.

Fibre Bragg grating written with 255nm laser radiation after stripping of the polymer jacket using 289nm light.

Metrics