Abstract

We demonstrate that chirped light is effective in shrinking or expanding a class of nonspreading electron eigenstate wave packets in Rydberg atoms.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C.K. Law and J.H. Eberly, Phys. Rev. Lett. 76, 1055 (1996)
    [CrossRef] [PubMed]
  2. E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond and S. Haroche, Phys. Rev. Lett. 79, 1 (1997)
    [CrossRef]
  3. C. P. Slichter, Principles of Magnetic Resonance, (Springer-Verlag 1978)
  4. Y.S. Bai, A.G. Yodh and T.W. Mossberg, Phys. Rev. Lett. 55, 1277 (1985)
    [CrossRef] [PubMed]
  5. See the overview in M. Shapiro and P. Brumer, Int. Rev. Phys. Chem. 13, 187 (1994)
    [CrossRef]
  6. R. Koslo, S. A. Rice, P.Gaspard, S. Tersigni, and D. J. Tannor, Chem. Phys. 139, 201 (1989)
    [CrossRef]
  7. R. M. Whitnell, K. R. Wilson and S. Mukamel, J. Phys. Chem. 97, 2320 (1993)
    [CrossRef]
  8. P. Gross and H. Rabitz, J. Chem. Phys. 105, 1299 (1996)
    [CrossRef]
  9. J. Oreg, F. T. Hioe and J.H. Eberly, Phys. Rev. A 29, 690 (1984)
    [CrossRef]
  10. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kulz and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988)
    [CrossRef]
  11. S.E. Harris, Phys. Today 50, 36 (1997)
    [CrossRef]
  12. I. Bialynicki-Birula, M. Kalinski and J. H. Eberly, Phys. Rev. Lett. 73, 1777 (1994)
    [CrossRef] [PubMed]
  13. M. Kalinski and J. H. Eberly, Phys. Rev. A 52, 4285 (1995)
    [CrossRef] [PubMed]
  14. D. Farrelly and T. Uzer, Phys. Rev. Lett. 74, 1720 (1995)
    [CrossRef] [PubMed]
  15. J. Zakrzewski, D. Delande and A. Buchleitner, Phys. Rev. Lett. 75, 4015 (1995)
    [CrossRef] [PubMed]
  16. For earlier references and a video of core-scattering dynamics of angularly conned Rydberg wave packets, see J. A. West and C. R. Stroud, Jr. , Optics Expr. 1, 31 (1997)
    [CrossRef]
  17. M. Kalinski, E. A. Shapiro and J. H. Eberly (in preparation)
  18. M.J. Feit, J.A. Fleck and A. Steiger, J. Comput. Phys. 47, 412 (1982)
    [CrossRef]
  19. C. H. Cheng, C. Y. Lee and T. F. Gallagher, Phys. Rev. Lett. 73, 3078 (1994)
    [CrossRef] [PubMed]
  20. M. R. W. Bellermann, P. M. Koch and D. Richards, Phys. Rev. Lett. 78, 3840 (1997)
    [CrossRef]
  21. C. Raman, C. W. S. Conover, C. I. Sukenik and P. H. Bucksbaum, Phys. Rev. Lett. 76, 2436 (1996)
    [CrossRef] [PubMed]

Other (21)

C.K. Law and J.H. Eberly, Phys. Rev. Lett. 76, 1055 (1996)
[CrossRef] [PubMed]

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond and S. Haroche, Phys. Rev. Lett. 79, 1 (1997)
[CrossRef]

C. P. Slichter, Principles of Magnetic Resonance, (Springer-Verlag 1978)

Y.S. Bai, A.G. Yodh and T.W. Mossberg, Phys. Rev. Lett. 55, 1277 (1985)
[CrossRef] [PubMed]

See the overview in M. Shapiro and P. Brumer, Int. Rev. Phys. Chem. 13, 187 (1994)
[CrossRef]

R. Koslo, S. A. Rice, P.Gaspard, S. Tersigni, and D. J. Tannor, Chem. Phys. 139, 201 (1989)
[CrossRef]

R. M. Whitnell, K. R. Wilson and S. Mukamel, J. Phys. Chem. 97, 2320 (1993)
[CrossRef]

P. Gross and H. Rabitz, J. Chem. Phys. 105, 1299 (1996)
[CrossRef]

J. Oreg, F. T. Hioe and J.H. Eberly, Phys. Rev. A 29, 690 (1984)
[CrossRef]

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kulz and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988)
[CrossRef]

S.E. Harris, Phys. Today 50, 36 (1997)
[CrossRef]

I. Bialynicki-Birula, M. Kalinski and J. H. Eberly, Phys. Rev. Lett. 73, 1777 (1994)
[CrossRef] [PubMed]

M. Kalinski and J. H. Eberly, Phys. Rev. A 52, 4285 (1995)
[CrossRef] [PubMed]

D. Farrelly and T. Uzer, Phys. Rev. Lett. 74, 1720 (1995)
[CrossRef] [PubMed]

J. Zakrzewski, D. Delande and A. Buchleitner, Phys. Rev. Lett. 75, 4015 (1995)
[CrossRef] [PubMed]

For earlier references and a video of core-scattering dynamics of angularly conned Rydberg wave packets, see J. A. West and C. R. Stroud, Jr. , Optics Expr. 1, 31 (1997)
[CrossRef]

M. Kalinski, E. A. Shapiro and J. H. Eberly (in preparation)

M.J. Feit, J.A. Fleck and A. Steiger, J. Comput. Phys. 47, 412 (1982)
[CrossRef]

C. H. Cheng, C. Y. Lee and T. F. Gallagher, Phys. Rev. Lett. 73, 3078 (1994)
[CrossRef] [PubMed]

M. R. W. Bellermann, P. M. Koch and D. Richards, Phys. Rev. Lett. 78, 3840 (1997)
[CrossRef]

C. Raman, C. W. S. Conover, C. I. Sukenik and P. H. Bucksbaum, Phys. Rev. Lett. 76, 2436 (1996)
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (2746 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Trojan Packet for the CP field frequency ω = 1=243 (n 0 = 24) and the field strength ε = 0.016=244

Fig. 2.
Fig. 2.

Energy spectrum of the hamiltonian (1) as a function of the scaled electric field εsc = εω -4/3 for ω = 1/203. Black lines show numerical results from (1). Each red line shows an analytic Trojan energy level predicted by the nonlinear pendular approach [13]. By following the black lines closely coincident with the red lines, one sees the level jumps required at various anti-crossings.

Fig. 3.
Fig. 3.

The initial wave packet (left) and the final packet (right) at the end of the compression process plotted in x - y real space coordinates. These are also the first and last frames of a 2.7MB linked QuickTime movie. The plotted zone covers a region 1500 × 1500 a. u. in size. The initial state was chosen to be the Gaussian packet Trojan state for ω 0 = 1/243 and ε = 0.016/243. Then ω(t) was changed linearly to the final value 1/183 during a time equal to 60 original cycles while the amplitude of the field was kept steady.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H R = p 2 2 1 r + εx ω L z
ω = 1 n 0 3 .
E ( t ) = ε [ x ̂ cos ( ω 0 t + μ t 2 ) + y ̂ sin ( ω 0 t + μ t 2 ) ] ,
𝛨 = 3 2 1 r 0 2 2 ϕ 2 + ε r 0 cos ϕ i Δ ϕ ,
dt 3 ε ω 2 3 .
d ω ˜ 6 π ε sc .
dt π 2 ( ε r 0 ) 2 ,
d ω ˜ π 2 ε sc 2 n 0 4 .

Metrics