Abstract

It is shown that diffusion and stochastic ionization of an optically excited Rydberg electron are generic long time phenomena which are consequences of the destruction of quantum coherence by laser fluctuations. Quantitatively these novel fluctuation-induced phenomena are characterized by non-exponential time evolutions whose power law dependences can be determined analytically. It is demonstrated that the competition between stochastic ionization and autoionization may lead to interesting new effects.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Alber and P. Zoller, “Laser excitation of electronic wave packets in Rydberg atoms”, Phys. Rep. 199, 231 (1991)
    [Crossref]
  2. P. Zoller, “AC-Stark splitting in double optical resonance and resonance fluorescence by non-monochromatic chaotic fields”, Phys. Rev. A 20, 1019 (1979)
    [Crossref]
  3. S.N. Dixit, P. Zoller, and P. Lambropoulos, “Non-Lorentzian laser line shapes and the reversed peak asymmetry in double optical resonance”, Phys. Rev. A 21, 1289 (1980)
    [Crossref]
  4. R. Walser, H. Ritsch, P. Zoller, and J. Cooper, “Laser-noise-induced population fluctuations in two-level systems: Complex and real Gaussian driving fields”, Phys. Rev. A 45, 468 (1992)
    [Crossref] [PubMed]
  5. A. Giusti-Suzor and P. Zoller, “Rydberg electrons in laser fields: A finite-range-interaction problem”, Phys. Rev. A 36, 5178 (1987)
    [Crossref] [PubMed]
  6. M.J. Seaton, “Quantum defect theory”, Rep. Prog. Phys. 46, 167 (1983)
    [Crossref]
  7. U. Fano and A.R.P. Rau, Atomic Collision and Spectra (Academic, New York, 1986)
  8. R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walter, and K. Yamada, “Microwave excitation of Rydberg atoms in the presence of noise”, Phys. Rev. Lett. 62, 341 (1989)
    [Crossref] [PubMed]
  9. J. G. Leopold and D. Richards, “Microwave ionization by electric fields with random phase noise”, J. Phys. B. 24, L243 (1991)
    [Crossref]
  10. H. Haken, in Handbuch der Physik edited by S. Flügge (Springer, New York, 1970), Vol. XXV/2c
  11. G. Alber and B. Eggers, “Rydberg electrons in intense fluctuating laser fields”, Phys. Rev. A 56, 820 (1997)
    [Crossref]
  12. G.S. Agarwal, “Quantum statistical theory of optical-resonance phenomena in fluctuating laser fields”, Phys. Rev. A. 18, 1490 (1978)
    [Crossref]
  13. B. Eggers and G. Alber (in preparation)

1997 (1)

G. Alber and B. Eggers, “Rydberg electrons in intense fluctuating laser fields”, Phys. Rev. A 56, 820 (1997)
[Crossref]

1992 (1)

R. Walser, H. Ritsch, P. Zoller, and J. Cooper, “Laser-noise-induced population fluctuations in two-level systems: Complex and real Gaussian driving fields”, Phys. Rev. A 45, 468 (1992)
[Crossref] [PubMed]

1991 (2)

G. Alber and P. Zoller, “Laser excitation of electronic wave packets in Rydberg atoms”, Phys. Rep. 199, 231 (1991)
[Crossref]

J. G. Leopold and D. Richards, “Microwave ionization by electric fields with random phase noise”, J. Phys. B. 24, L243 (1991)
[Crossref]

1989 (1)

R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walter, and K. Yamada, “Microwave excitation of Rydberg atoms in the presence of noise”, Phys. Rev. Lett. 62, 341 (1989)
[Crossref] [PubMed]

1987 (1)

A. Giusti-Suzor and P. Zoller, “Rydberg electrons in laser fields: A finite-range-interaction problem”, Phys. Rev. A 36, 5178 (1987)
[Crossref] [PubMed]

1983 (1)

M.J. Seaton, “Quantum defect theory”, Rep. Prog. Phys. 46, 167 (1983)
[Crossref]

1980 (1)

S.N. Dixit, P. Zoller, and P. Lambropoulos, “Non-Lorentzian laser line shapes and the reversed peak asymmetry in double optical resonance”, Phys. Rev. A 21, 1289 (1980)
[Crossref]

1979 (1)

P. Zoller, “AC-Stark splitting in double optical resonance and resonance fluorescence by non-monochromatic chaotic fields”, Phys. Rev. A 20, 1019 (1979)
[Crossref]

1978 (1)

G.S. Agarwal, “Quantum statistical theory of optical-resonance phenomena in fluctuating laser fields”, Phys. Rev. A. 18, 1490 (1978)
[Crossref]

Agarwal, G.S.

G.S. Agarwal, “Quantum statistical theory of optical-resonance phenomena in fluctuating laser fields”, Phys. Rev. A. 18, 1490 (1978)
[Crossref]

Alber, G.

G. Alber and B. Eggers, “Rydberg electrons in intense fluctuating laser fields”, Phys. Rev. A 56, 820 (1997)
[Crossref]

G. Alber and P. Zoller, “Laser excitation of electronic wave packets in Rydberg atoms”, Phys. Rep. 199, 231 (1991)
[Crossref]

B. Eggers and G. Alber (in preparation)

Blümel, R.

R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walter, and K. Yamada, “Microwave excitation of Rydberg atoms in the presence of noise”, Phys. Rev. Lett. 62, 341 (1989)
[Crossref] [PubMed]

Cooper, J.

R. Walser, H. Ritsch, P. Zoller, and J. Cooper, “Laser-noise-induced population fluctuations in two-level systems: Complex and real Gaussian driving fields”, Phys. Rev. A 45, 468 (1992)
[Crossref] [PubMed]

Dixit, S.N.

S.N. Dixit, P. Zoller, and P. Lambropoulos, “Non-Lorentzian laser line shapes and the reversed peak asymmetry in double optical resonance”, Phys. Rev. A 21, 1289 (1980)
[Crossref]

Eggers, B.

G. Alber and B. Eggers, “Rydberg electrons in intense fluctuating laser fields”, Phys. Rev. A 56, 820 (1997)
[Crossref]

B. Eggers and G. Alber (in preparation)

Fano, U.

U. Fano and A.R.P. Rau, Atomic Collision and Spectra (Academic, New York, 1986)

Giusti-Suzor, A.

A. Giusti-Suzor and P. Zoller, “Rydberg electrons in laser fields: A finite-range-interaction problem”, Phys. Rev. A 36, 5178 (1987)
[Crossref] [PubMed]

Graham, R.

R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walter, and K. Yamada, “Microwave excitation of Rydberg atoms in the presence of noise”, Phys. Rev. Lett. 62, 341 (1989)
[Crossref] [PubMed]

Haken, H.

H. Haken, in Handbuch der Physik edited by S. Flügge (Springer, New York, 1970), Vol. XXV/2c

Lambropoulos, P.

S.N. Dixit, P. Zoller, and P. Lambropoulos, “Non-Lorentzian laser line shapes and the reversed peak asymmetry in double optical resonance”, Phys. Rev. A 21, 1289 (1980)
[Crossref]

Leopold, J. G.

J. G. Leopold and D. Richards, “Microwave ionization by electric fields with random phase noise”, J. Phys. B. 24, L243 (1991)
[Crossref]

Rau, A.R.P.

U. Fano and A.R.P. Rau, Atomic Collision and Spectra (Academic, New York, 1986)

Richards, D.

J. G. Leopold and D. Richards, “Microwave ionization by electric fields with random phase noise”, J. Phys. B. 24, L243 (1991)
[Crossref]

Ritsch, H.

R. Walser, H. Ritsch, P. Zoller, and J. Cooper, “Laser-noise-induced population fluctuations in two-level systems: Complex and real Gaussian driving fields”, Phys. Rev. A 45, 468 (1992)
[Crossref] [PubMed]

Seaton, M.J.

M.J. Seaton, “Quantum defect theory”, Rep. Prog. Phys. 46, 167 (1983)
[Crossref]

Sirko, L.

R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walter, and K. Yamada, “Microwave excitation of Rydberg atoms in the presence of noise”, Phys. Rev. Lett. 62, 341 (1989)
[Crossref] [PubMed]

Smilansky, U.

R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walter, and K. Yamada, “Microwave excitation of Rydberg atoms in the presence of noise”, Phys. Rev. Lett. 62, 341 (1989)
[Crossref] [PubMed]

Walser, R.

R. Walser, H. Ritsch, P. Zoller, and J. Cooper, “Laser-noise-induced population fluctuations in two-level systems: Complex and real Gaussian driving fields”, Phys. Rev. A 45, 468 (1992)
[Crossref] [PubMed]

Walter, H.

R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walter, and K. Yamada, “Microwave excitation of Rydberg atoms in the presence of noise”, Phys. Rev. Lett. 62, 341 (1989)
[Crossref] [PubMed]

Yamada, K.

R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walter, and K. Yamada, “Microwave excitation of Rydberg atoms in the presence of noise”, Phys. Rev. Lett. 62, 341 (1989)
[Crossref] [PubMed]

Zoller, P.

R. Walser, H. Ritsch, P. Zoller, and J. Cooper, “Laser-noise-induced population fluctuations in two-level systems: Complex and real Gaussian driving fields”, Phys. Rev. A 45, 468 (1992)
[Crossref] [PubMed]

G. Alber and P. Zoller, “Laser excitation of electronic wave packets in Rydberg atoms”, Phys. Rep. 199, 231 (1991)
[Crossref]

A. Giusti-Suzor and P. Zoller, “Rydberg electrons in laser fields: A finite-range-interaction problem”, Phys. Rev. A 36, 5178 (1987)
[Crossref] [PubMed]

S.N. Dixit, P. Zoller, and P. Lambropoulos, “Non-Lorentzian laser line shapes and the reversed peak asymmetry in double optical resonance”, Phys. Rev. A 21, 1289 (1980)
[Crossref]

P. Zoller, “AC-Stark splitting in double optical resonance and resonance fluorescence by non-monochromatic chaotic fields”, Phys. Rev. A 20, 1019 (1979)
[Crossref]

J. Phys. B. (1)

J. G. Leopold and D. Richards, “Microwave ionization by electric fields with random phase noise”, J. Phys. B. 24, L243 (1991)
[Crossref]

Phys. Rep. (1)

G. Alber and P. Zoller, “Laser excitation of electronic wave packets in Rydberg atoms”, Phys. Rep. 199, 231 (1991)
[Crossref]

Phys. Rev. A (5)

P. Zoller, “AC-Stark splitting in double optical resonance and resonance fluorescence by non-monochromatic chaotic fields”, Phys. Rev. A 20, 1019 (1979)
[Crossref]

S.N. Dixit, P. Zoller, and P. Lambropoulos, “Non-Lorentzian laser line shapes and the reversed peak asymmetry in double optical resonance”, Phys. Rev. A 21, 1289 (1980)
[Crossref]

R. Walser, H. Ritsch, P. Zoller, and J. Cooper, “Laser-noise-induced population fluctuations in two-level systems: Complex and real Gaussian driving fields”, Phys. Rev. A 45, 468 (1992)
[Crossref] [PubMed]

A. Giusti-Suzor and P. Zoller, “Rydberg electrons in laser fields: A finite-range-interaction problem”, Phys. Rev. A 36, 5178 (1987)
[Crossref] [PubMed]

G. Alber and B. Eggers, “Rydberg electrons in intense fluctuating laser fields”, Phys. Rev. A 56, 820 (1997)
[Crossref]

Phys. Rev. A. (1)

G.S. Agarwal, “Quantum statistical theory of optical-resonance phenomena in fluctuating laser fields”, Phys. Rev. A. 18, 1490 (1978)
[Crossref]

Phys. Rev. Lett. (1)

R. Blümel, R. Graham, L. Sirko, U. Smilansky, H. Walter, and K. Yamada, “Microwave excitation of Rydberg atoms in the presence of noise”, Phys. Rev. Lett. 62, 341 (1989)
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

M.J. Seaton, “Quantum defect theory”, Rep. Prog. Phys. 46, 167 (1983)
[Crossref]

Other (3)

U. Fano and A.R.P. Rau, Atomic Collision and Spectra (Academic, New York, 1986)

B. Eggers and G. Alber (in preparation)

H. Haken, in Handbuch der Physik edited by S. Flügge (Springer, New York, 1970), Vol. XXV/2c

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig.1:
Fig.1:

Radial probability distributions of the excited Rydberg electron as a function of interaction time t in units of the mean classical orbit time T (r denotes the radial distance of the Rydberg electron from the nucleus in units of the Bohr radius); γT = 0.1, bT = 0.01 (a), γT = 10.0, bT = 10.0 (b), γT = 0.5, bT = 15.0 (c). (dark red…high probability, light blue…low probability)

Fig.2:
Fig.2:

Initial state probability Pg (t) and ionization probability Pion (t) as a function of interaction time t in units of the mean classical orbit time T; parameters as in Fig. la (a), parameters as in Fig.lb (b), parameters as in Fig.lc (c). In Fig.2d Pg (t) and the ionization probabilites P ion-ch.l(t) and P ion-ch.2(t) of channels 1 and 2 are shown for one-photon excitation of autoionizing Rydberg states with n̄ = α 1 + (-2ϵ̄)1/2 = 80, α 1 = 0.1, γT = 1.0, bT = 300.0, Γ n = 2τ(n - α 1)-3/π and τ = 10-5a.u..

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H = g g g + n , i n , i n , i n , i n , i ( n , i g n , i d g E ( t ) e iωt + h . c . ) .
t c = 4 π γb 27 [ ( ¯ 2 + 3 ( b 2 + γ 2 4 ) 4 ) 3 2 ¯ 2 + b 2 + γ 2 4 ] 1 2 .
P g ( t ) = ( γ + 2 b ) 2 ( 2 ) 2 [ γb Γ 3 ( 5 3 ) 27 π ( ¯ 2 + b 2 + γ 2 4 ) ] 1 3 t 5 3 ( t > t c )
P ion ( t ) = 1 Γ ( 2 3 ) ( γ + 2 b ) 6 [ γb π ( ¯ 2 + b 2 + γ 2 4 ) ] 1 3 t 2 3 ( t > t c )
P g ( t ) = 2 π [ 2 T ¯ t ] 1 2 ( t 1 < t < t c )

Metrics