Abstract

Spontaneous decay of excited cold atoms into cavity can drastically affect their translational dynamics, namely, atomic reflection, transmission or localization in the cavity.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Japha and G. Kurizki, "Spontaneous emission from tunneling two-level atoms," Phys. Rev. Lett. 77, 2909 (1996)
    [CrossRef] [PubMed]
  2. D. Sokolovski and J. N. L. Connor, "Quantum interference and determination of the traversal time," Phys. Rev. A 47, 4677 (1993) note the connection between traversal-time measurement in tunneling and path information.
    [CrossRef] [PubMed]
  3. T. Pfau, S. Spalter, Ch. Kurtsiefer, C. R. Ekstrom and J. Mlynek, "Loss of spatial coherence by a single spontaneous emission," Phys. Rev. Lett. 73, 1223 (1994)
    [CrossRef] [PubMed]
  4. A. Stern, Y. Aharonov and Y. Imry, "Phase uncertainty and loss of interference: a general picture," Phys. Rev. A 41, 3436 (1990).
    [CrossRef] [PubMed]
  5. C. Cohen-Tannoudji et. al., Atom-Field Interactions (Wiley, New-York,1992);
  6. G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission (Springer, Berlin, 1974).
  7. D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, "Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator," Phys. Rev. Lett. 58, 1320 (1987)
    [CrossRef] [PubMed]
  8. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, New York, 1965).
  9. Y. Japha, V. M. Akulin and G. Kurizki, "Localized decoherence of two-level wavepackets: Atomic binding and skin effects," Phys. Rev. Lett. (submitted)
  10. B. G. Englert, J. Schwinger, A. O. Barut and M. O. Scully, "Reflecting slow atoms from a micromaser field," Europhys. Lett.14, 25 (1991)
    [CrossRef]
  11. M.O. Scully, G.M. Meyer and H. Walther, "Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity," Phys. Rev. Lett. 76, 4144 (1996)
    [CrossRef] [PubMed]
  12. Excited state and total amplitude of ground state http://www.weizmann.ac.il/ cfyoni/movie.mpg
  13. Ground state entangled with resonant emission http://www.weizmann.ac.il/ cfyoni/movie1.mpg
  14. Ground state entangled with positive detuning http://www.weizmann.ac.il/ cfyoni/movie2.mpg
  15. Ground state entangled with negative detuning http://www.weizmann.ac.il/ cfyoni/movie3.mpg
  16. Ground state entangled with forbidden emission http://www.weizmann.ac.il/ cfyoni/movie4.mpg

Other (16)

Y. Japha and G. Kurizki, "Spontaneous emission from tunneling two-level atoms," Phys. Rev. Lett. 77, 2909 (1996)
[CrossRef] [PubMed]

D. Sokolovski and J. N. L. Connor, "Quantum interference and determination of the traversal time," Phys. Rev. A 47, 4677 (1993) note the connection between traversal-time measurement in tunneling and path information.
[CrossRef] [PubMed]

T. Pfau, S. Spalter, Ch. Kurtsiefer, C. R. Ekstrom and J. Mlynek, "Loss of spatial coherence by a single spontaneous emission," Phys. Rev. Lett. 73, 1223 (1994)
[CrossRef] [PubMed]

A. Stern, Y. Aharonov and Y. Imry, "Phase uncertainty and loss of interference: a general picture," Phys. Rev. A 41, 3436 (1990).
[CrossRef] [PubMed]

C. Cohen-Tannoudji et. al., Atom-Field Interactions (Wiley, New-York,1992);

G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission (Springer, Berlin, 1974).

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, "Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator," Phys. Rev. Lett. 58, 1320 (1987)
[CrossRef] [PubMed]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, New York, 1965).

Y. Japha, V. M. Akulin and G. Kurizki, "Localized decoherence of two-level wavepackets: Atomic binding and skin effects," Phys. Rev. Lett. (submitted)

B. G. Englert, J. Schwinger, A. O. Barut and M. O. Scully, "Reflecting slow atoms from a micromaser field," Europhys. Lett.14, 25 (1991)
[CrossRef]

M.O. Scully, G.M. Meyer and H. Walther, "Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity," Phys. Rev. Lett. 76, 4144 (1996)
[CrossRef] [PubMed]

Excited state and total amplitude of ground state http://www.weizmann.ac.il/ cfyoni/movie.mpg

Ground state entangled with resonant emission http://www.weizmann.ac.il/ cfyoni/movie1.mpg

Ground state entangled with positive detuning http://www.weizmann.ac.il/ cfyoni/movie2.mpg

Ground state entangled with negative detuning http://www.weizmann.ac.il/ cfyoni/movie3.mpg

Ground state entangled with forbidden emission http://www.weizmann.ac.il/ cfyoni/movie4.mpg

Supplementary Material (5)

» Media 1: MOV (79 KB)     
» Media 2: MOV (49 KB)     
» Media 3: MOV (56 KB)     
» Media 4: MOV (69 KB)     
» Media 5: MOV (51 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Figure 1:
Figure 1:

(a) The energy spectrum of transmitted ground state atoms: Solid curve - transmission probability Pω [Eq. (3)] (in units of ħ/V) for Ek /V = 0.8, L = 2.5λ DB (Ek /V = 1), γ = 0.05V/ħ, ωeg = 100V/ħ as a function of kinetic energy following emission. Dashed curve - spontaneous lineshape. Inset: Idem, on a small scale. Dotted curve - cavity lineshape. (b) Schematic description of the experiment

Figure 2:
Figure 2:

Numerical simulation of an initially excited atomic wavepacket approaching a sharp interface between a region of enhanced spontaneous emission and free space, showing excited-state reflection (orange) and different ground-state components: (a) Total ground-state envelope (b) Δq = 0 (no change of kinetic energy) (c) Δq > 0 (slowing down) (d) Δq < 0 (acceleration) (e) the incident and reflected wavepackets at the moment of incidence on the interface and a bound component observable by “forbidden” (near-field) photon detection. [Media 1] [Media 2] [Media 3] [Media 4] [Media 5]

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P e tr = σ E k V i ħ Γ 2
σ ( E k , V ) = [ cos pL i k 2 + p 2 2 kp sin pL ] 1 ,
P g tr = 0 E k P ω ,
P ω = F ( ω ) 1 ħ Δ E k σ ω E k V 2
E k V ħη < E k < ħ ω eg , γ η .
σ ω E k V σ ( E k ħ Δ , V ) σ ( E k , V Γ )
P g tr ~ V E k + ħ ω eg dE γ [ ( E E k ) ħ ] γ V E k
P tot tr = P g tr + P e tr 0 0 ' e γ τ τ ' σ ̂ * τ V σ ̂ ( τ ' , V )
ψ ( r , t ) = ψ ˜ e ( r , t ) e , { 0 } + q ψ ˜ q ( r , t ) g , { q }
Γ ( r ) = d 3 r ' Γ ( r , r ' ) = μ 2 q ε q ( r ) 2 δ ( ω q ω 0 ) Δ c i η c
2 x 2 ψ e ( x ) + 2 m ħ 2 [ E + i ħ γ c ( x ) ] ψ e ( x ) = 0

Metrics