## Abstract

Spontaneous decay of excited cold atoms into cavity can drastically affect their translational dynamics, namely, atomic reflection, transmission or localization in the cavity.

© 1997 Optical Society of America

Full Article | PDF Article**Optics Express**- Vol. 1,
- Issue 6,
- pp. 134-140
- (1997)
- •doi: 10.1364/OE.1.000134

Spontaneous decay of excited cold atoms into cavity can drastically affect their translational dynamics, namely, atomic reflection, transmission or localization in the cavity.

© 1997 Optical Society of America

Full Article | PDF Article- View by:
- Article Order
- |
- Year
- |
- Author
- |
- Publication

- Y. Japha and G. Kurizki, “Spontaneous emission from tunneling two-level atoms,” Phys. Rev. Lett. 77, 2909 (1996)

[CrossRef] [PubMed] - D. Sokolovski and J. N. L. Connor, “Quantum interference and determination of the traversal time,” Phys. Rev. A 47, 4677 (1993) note the connection between traversal-time measurement in tunneling and path information.

[CrossRef] [PubMed] - T. Pfau, S. Spälter, Ch. Kurtsiefer, C. R. Ekstrom, and J. Mlynek, “Loss of spatial coherence by a single spontaneous emission,” Phys. Rev. Lett. 73, 1223 (1994)

[CrossRef] [PubMed] - A. Stern, Y. Aharonov, and Y. Imry, “Phase uncertainty and loss of interference: a general picture,” Phys. Rev. A 41, 3436 (1990).

[CrossRef] [PubMed] - C. Cohen-Tannoudji et. al., Atom-Field Interactions (Wiley, New-York,1992);

- G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission (Springer, Berlin, 1974).

- D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987)

[CrossRef] [PubMed] - R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, New-York, 1965).

- Y. Japha, V. M. Akulin, and G. Kurizki, “Localized decoherence of two-level wavepackets: Atomic binding and skin effects,” Phys. Rev. Lett. (submitted)

- B. G. Englert, J. Schwinger, A. O. Barut, and M. O. Scully, “Reflecting slow atoms from a micromaser field,” Europhys. Lett. 14, 25 (1991)

[CrossRef] - M.O. Scully, G.M. Meyer, and H. Walther, “Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity,” Phys. Rev. Lett. 76, 4144 (1996)

[CrossRef] [PubMed] - Excited state and total amplitude of ground state http://www.weizmann.ac.il/ cfyoni/movie.mpg

- Ground state entangled with resonant emission http://www.weizmann.ac.il/ cfyoni/movie1.mpg

- Ground state entangled with positive detuning http://www.weizmann.ac.il/ cfyoni/movie2.mpg

- Ground state entangled with negative detuning http://www.weizmann.ac.il/ cfyoni/movie3.mpg

- Ground state entangled with forbidden emission http://www.weizmann.ac.il/ cfyoni/movie4.mpg

Y. Japha and G. Kurizki, “Spontaneous emission from tunneling two-level atoms,” Phys. Rev. Lett. 77, 2909 (1996)

[CrossRef]
[PubMed]

M.O. Scully, G.M. Meyer, and H. Walther, “Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity,” Phys. Rev. Lett. 76, 4144 (1996)

[CrossRef]
[PubMed]

T. Pfau, S. Spälter, Ch. Kurtsiefer, C. R. Ekstrom, and J. Mlynek, “Loss of spatial coherence by a single spontaneous emission,” Phys. Rev. Lett. 73, 1223 (1994)

[CrossRef]
[PubMed]

D. Sokolovski and J. N. L. Connor, “Quantum interference and determination of the traversal time,” Phys. Rev. A 47, 4677 (1993) note the connection between traversal-time measurement in tunneling and path information.

[CrossRef]
[PubMed]

B. G. Englert, J. Schwinger, A. O. Barut, and M. O. Scully, “Reflecting slow atoms from a micromaser field,” Europhys. Lett. 14, 25 (1991)

[CrossRef]

A. Stern, Y. Aharonov, and Y. Imry, “Phase uncertainty and loss of interference: a general picture,” Phys. Rev. A 41, 3436 (1990).

[CrossRef]
[PubMed]

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987)

[CrossRef]
[PubMed]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, New-York, 1965).

G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission (Springer, Berlin, 1974).

[CrossRef]
[PubMed]

Y. Japha, V. M. Akulin, and G. Kurizki, “Localized decoherence of two-level wavepackets: Atomic binding and skin effects,” Phys. Rev. Lett. (submitted)

[CrossRef]

[CrossRef]
[PubMed]

C. Cohen-Tannoudji et. al., Atom-Field Interactions (Wiley, New-York,1992);

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]

[CrossRef]
[PubMed]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, New-York, 1965).

[CrossRef]
[PubMed]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, New-York, 1965).

[CrossRef]
[PubMed]

Y. Japha and G. Kurizki, “Spontaneous emission from tunneling two-level atoms,” Phys. Rev. Lett. 77, 2909 (1996)

[CrossRef]
[PubMed]

Y. Japha, V. M. Akulin, and G. Kurizki, “Localized decoherence of two-level wavepackets: Atomic binding and skin effects,” Phys. Rev. Lett. (submitted)

Y. Japha and G. Kurizki, “Spontaneous emission from tunneling two-level atoms,” Phys. Rev. Lett. 77, 2909 (1996)

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

M.O. Scully, G.M. Meyer, and H. Walther, “Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity,” Phys. Rev. Lett. 76, 4144 (1996)

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]

[CrossRef]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

[CrossRef]
[PubMed]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, New-York, 1965).

Excited state and total amplitude of ground state http://www.weizmann.ac.il/ cfyoni/movie.mpg

Ground state entangled with resonant emission http://www.weizmann.ac.il/ cfyoni/movie1.mpg

Ground state entangled with positive detuning http://www.weizmann.ac.il/ cfyoni/movie2.mpg

Ground state entangled with negative detuning http://www.weizmann.ac.il/ cfyoni/movie3.mpg

Ground state entangled with forbidden emission http://www.weizmann.ac.il/ cfyoni/movie4.mpg

C. Cohen-Tannoudji et. al., Atom-Field Interactions (Wiley, New-York,1992);

G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission (Springer, Berlin, 1974).

» Media 1: MOV (79 KB) |

» Media 2: MOV (49 KB) |

» Media 3: MOV (56 KB) |

» Media 4: MOV (69 KB) |

» Media 5: MOV (51 KB) |

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

(a) The energy spectrum of transmitted ground state atoms: Solid curve - transmission probability _{ω}
[Eq. (3)] (in units of _{k}
/_{
DB
}(_{k}
/_{eg}
= 100

Numerical simulation of an initially excited atomic wavepacket approaching a sharp interface between a region of enhanced spontaneous emission and free space, showing excited-state reflection (orange) and different ground-state components: (a) Total ground-state envelope (b) Δ_{q} = 0 (no change of kinetic energy) (c) Δ_{q} > 0 (slowing down) (d) Δ_{q} < 0 (acceleration) (e) the incident and reflected wavepackets at the moment of incidence on the interface and a bound component observable by “forbidden” (near-field) photon detection. [

Equations on this page are rendered with MathJax. Learn more.

$${P}_{e}^{\mathit{tr}}={\mid \sigma \left({E}_{k},V-i\mathit{\u0127}\Gamma \right)\mid}^{2}$$

$$\sigma ({E}_{k},V)={\left[\mathrm{cos}\phantom{\rule{.2em}{0ex}}\mathit{pL}-i\frac{{k}^{2}+{p}^{2}}{2\mathit{kp}}\mathrm{sin}\phantom{\rule{.2em}{0ex}}\mathit{pL}\right]}^{-1},$$

$${P}_{g}^{\mathit{tr}}={\int}_{0}^{{E}_{k}}\mathit{d\omega}{P}_{\omega},$$

$${P}_{\omega}=F\left(\omega \right)\sqrt{1-\frac{\mathit{\u0127}\Delta}{{E}_{k}}}{\mid {\sigma}_{\omega}\left({E}_{k},V\right)\mid}^{2}$$

$$\mid {E}_{k}-V\mid \ll \mathit{\u0127\eta}<{E}_{k}<\mathit{\u0127}{\omega}_{\mathit{eg}},\gamma \ll \eta .$$

$${\sigma}_{\omega}\left({E}_{k},V\right)\approx \sigma ({E}_{k}-\mathit{\u0127}\Delta ,V)-\sigma \left({E}_{k},V-\mathit{i\u0127}\Gamma \right)$$

$${P}_{g}^{\mathit{tr}}~{\int}_{V}^{{E}_{k}+\mathit{\u0127}{\omega}_{\mathit{eg}}}\mathit{dE}{\mathcal{L}}_{\gamma}\left[\frac{\left(E-{E}_{k}\right)}{\mathit{\u0127}}\right]\approx \frac{\gamma}{V-{E}_{k}}$$

$${P}_{\mathit{tot}}^{\mathit{tr}}={P}_{g}^{\mathit{tr}}+{P}_{e}^{\mathit{tr}}\approx {\int}_{0}^{\infty}\mathit{d\tau}{\int}_{0}^{\infty}\mathit{d\tau}\text{'}{e}^{-\gamma \mid \tau -\tau \text{'}\mid}{\hat{\sigma}}^{*}\left(\tau ,V\right)\hat{\sigma}(\tau \text{'},V)$$

$$\mid \psi (\mathbf{r},t)\u3009={\tilde{\psi}}_{e}(\mathbf{r},t)\mid e,\left\{0\right\}\u3009+\sum _{q}{\tilde{\psi}}_{q}(\mathbf{r},t)\mid g,\left\{q\right\}\u3009$$

$$\Gamma \left(r\right)=\int {d}^{3}r\text{'}\Gamma (r,r\text{'})={\mid \mu \mid}^{2}\frac{{\sum}_{q}{\mid {\epsilon}_{q}\left(r\right)\mid}^{2}\delta \left({\omega}_{q}-{\omega}_{0}\right)}{{\Delta}_{c}-i{\eta}_{c}}$$

$$\frac{{\partial}^{2}}{\partial {x}^{2}}{\psi}_{e}\left(x\right)+\frac{2m}{{\mathit{\u0127}}^{2}}\left[E+i\mathit{\u0127}{\gamma}_{c}\left(x\right)\right]{\psi}_{e}\left(x\right)=0$$

© Copyright 2016 | The Optical Society. All Rights Reserved