Abstract

It is shown that optical rectification in biased quantum wells using specially shaped optical pulses can be used to generate quasi-half-cycle THz electromagnetic pulses. Namely, we investigate THz generation by pulses incorporating a rapid π phase shift. We further explore the potential of this scheme for high-repetition-rate quasi-half-cycle THz pulse generation.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. S. C. Luo, S.-L. Chuang, P. C. M. Planken, I. Brener, and M. S. Nuss, "Coherent double-pulse control of quantum beats in a coupled quantum well," Phys. Rev. B 48, 11043-11050 (1993).
    [CrossRef]
  2. A. M. Weiner, "Enhancement of coherent charge oscillations in coupled quantum wells by femtosecond pulse shaping," J. Opt. Soc. Am. B 11, 2480-2491 (1994).
    [CrossRef]
  3. A.M. Weiner, D. E. Laird, G. P. Wiederrecht, and K. A. Nelson, "Femtosecond multiple-pulse impulsively stimulated Raman scattering spectroscopy," J. Opt. Soc. Am. B 8, 1264-1275 (1991).
    [CrossRef]
  4. A. S. Weling and D. H. Auston, "Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space," J. Opt. Soc. Am. B 13, 2783-2791 (1996).
    [CrossRef]
  5. Y. Liu, S.-G. Park, and A. M. Weiner, "Terahertz waveform synthesis via optical pulse shaping," IEEE J. Sel. Top. Quantum Electron. 2, 709-719 (1996).
    [CrossRef]
  6. A. M. Weiner, J. P. Heritage, and R. N. Thurston, "Synthesis of phase-coherent, picosecond optical square pulses," Opt. Lett. 11, 153-155 (1986).
    [CrossRef] [PubMed]
  7. R.N. Thurston, J. P. Heritage, A. M.Weiner, and W. J. Tomlinson, "Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor," IEEE J. Quantum Electron. QE-22, 682-696 (1986).
    [CrossRef]
  8. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563-1572 (1988).
    [CrossRef]
  9. M. D. Crisp, "Propagation of small-area pulses of coherent light through a resonant medium," Phys. Rev. A 1, 1604-1611 (1970).
    [CrossRef]
  10. J. E. Rothenberg, D. Grischkowsky, and A. C. Balant, "Observation of ther formation of the 0 pi pulse," Phys. Rev. Lett. 53, 552-555 (1984).
    [CrossRef]
  11. A. P. Heberle, J. J. Baumberg, and K. Koehler, "Ultrafast coherent control and destruction of excitons in quantum wells," Phys. Rev. Lett. 75, 2598-2601 (1995).
    [CrossRef] [PubMed]
  12. A. P. Heberle, J. J. Baumberg, E. Binder, T. Kuhn, K. K ohler, and K. H. Ploog, "Coherent control of exciton density and spin," IEEE J. Sel. Top. Quantum Electron. 2, 440-446 (1996).
  13. D. S. Citrin and T. B. Norris, "Constraints on coherent control of quantum-well excitons for high-speed all-optical switching," IEEE J. Quantum Electron. 33, 404-407 (1997).
    [CrossRef]
  14. D. S. Citrin and T. B. Norris, "Coherent control of quantum-well excitons in a resonant semiconductor microcavity for high-speed all-optical switching," IEEE J. Sel. Top. Quantum Electron. 2, 401-410 (1996).
    [CrossRef]
  15. D. S. Citrin, "Generation of 10-THz transients from a subpicosecond optical pulse and a 1-THz field in quantum wells," Appl. Phys. Lett. 70, 1189-1191 (1997).
    [CrossRef]
  16. C. Raman, C. W. S. Conover, C. I. Surenik, and P. H. Bucksbaum, "Ionization of Rydberg wave packets by subpicosecond, half-cycle electromagnetic pulses," Phys. Rev. Lett. 76, 2436-2439 (1996), and references therein.
    [CrossRef] [PubMed]
  17. D. S. Citrin, M. Yamanishi, and Y. Kadoya, "Coherent control of THz generation in a DC-biased semiconductor microcavity," IEEE J. Sel. Top. Quantum Electron. 2, 720-724 (1996).
    [CrossRef]
  18. F. Tassone, F. Bassani, and L. C. Andreani, "Quantum-well reflectivity and exciton-polariton dispersion," Phys. Rev. B 45, 6023-6030 (1992).
    [CrossRef]
  19. D. S. Citrin, "Mateiral versus optical approaches to exciton polaritons in quantum wells: Formal results," Phys. Rev. B 50, 5497-5503 (1994).
    [CrossRef]
  20. L. C. Andreani, "Exciton polaritons in multiple quantum wells," Phys. Lett. A 192, 99-103 (1994).
    [CrossRef]
  21. E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, "Light propagation in multiple quantum wells," Phys. Solid State 36, 1156 (1994).
  22. D. S. Citrin, "Radiative lifetimes of excitons in quantum wells: Localization and phase-coherence effects," Phys. Rev. B 47, 3832-3841 (1993).
    [CrossRef]
  23. D. S. Citrin, "Self-pulse-shaping coherent control of excitons in a semiconductor microcavity," Phys. Rev. Lett. 77, 4596-4599 (1996).
    [CrossRef] [PubMed]
  24. T. Ostreich and A. Knorr, "Nonperturbative scaling behavior of the coherent semiconductor Bloch equations in the low-density regime," Phys. Rev. B 50, 5717-5720 (1994).
    [CrossRef]

Other (24)

M. S. C. Luo, S.-L. Chuang, P. C. M. Planken, I. Brener, and M. S. Nuss, "Coherent double-pulse control of quantum beats in a coupled quantum well," Phys. Rev. B 48, 11043-11050 (1993).
[CrossRef]

A. M. Weiner, "Enhancement of coherent charge oscillations in coupled quantum wells by femtosecond pulse shaping," J. Opt. Soc. Am. B 11, 2480-2491 (1994).
[CrossRef]

A.M. Weiner, D. E. Laird, G. P. Wiederrecht, and K. A. Nelson, "Femtosecond multiple-pulse impulsively stimulated Raman scattering spectroscopy," J. Opt. Soc. Am. B 8, 1264-1275 (1991).
[CrossRef]

A. S. Weling and D. H. Auston, "Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space," J. Opt. Soc. Am. B 13, 2783-2791 (1996).
[CrossRef]

Y. Liu, S.-G. Park, and A. M. Weiner, "Terahertz waveform synthesis via optical pulse shaping," IEEE J. Sel. Top. Quantum Electron. 2, 709-719 (1996).
[CrossRef]

A. M. Weiner, J. P. Heritage, and R. N. Thurston, "Synthesis of phase-coherent, picosecond optical square pulses," Opt. Lett. 11, 153-155 (1986).
[CrossRef] [PubMed]

R.N. Thurston, J. P. Heritage, A. M.Weiner, and W. J. Tomlinson, "Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor," IEEE J. Quantum Electron. QE-22, 682-696 (1986).
[CrossRef]

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563-1572 (1988).
[CrossRef]

M. D. Crisp, "Propagation of small-area pulses of coherent light through a resonant medium," Phys. Rev. A 1, 1604-1611 (1970).
[CrossRef]

J. E. Rothenberg, D. Grischkowsky, and A. C. Balant, "Observation of ther formation of the 0 pi pulse," Phys. Rev. Lett. 53, 552-555 (1984).
[CrossRef]

A. P. Heberle, J. J. Baumberg, and K. Koehler, "Ultrafast coherent control and destruction of excitons in quantum wells," Phys. Rev. Lett. 75, 2598-2601 (1995).
[CrossRef] [PubMed]

A. P. Heberle, J. J. Baumberg, E. Binder, T. Kuhn, K. K ohler, and K. H. Ploog, "Coherent control of exciton density and spin," IEEE J. Sel. Top. Quantum Electron. 2, 440-446 (1996).

D. S. Citrin and T. B. Norris, "Constraints on coherent control of quantum-well excitons for high-speed all-optical switching," IEEE J. Quantum Electron. 33, 404-407 (1997).
[CrossRef]

D. S. Citrin and T. B. Norris, "Coherent control of quantum-well excitons in a resonant semiconductor microcavity for high-speed all-optical switching," IEEE J. Sel. Top. Quantum Electron. 2, 401-410 (1996).
[CrossRef]

D. S. Citrin, "Generation of 10-THz transients from a subpicosecond optical pulse and a 1-THz field in quantum wells," Appl. Phys. Lett. 70, 1189-1191 (1997).
[CrossRef]

C. Raman, C. W. S. Conover, C. I. Surenik, and P. H. Bucksbaum, "Ionization of Rydberg wave packets by subpicosecond, half-cycle electromagnetic pulses," Phys. Rev. Lett. 76, 2436-2439 (1996), and references therein.
[CrossRef] [PubMed]

D. S. Citrin, M. Yamanishi, and Y. Kadoya, "Coherent control of THz generation in a DC-biased semiconductor microcavity," IEEE J. Sel. Top. Quantum Electron. 2, 720-724 (1996).
[CrossRef]

F. Tassone, F. Bassani, and L. C. Andreani, "Quantum-well reflectivity and exciton-polariton dispersion," Phys. Rev. B 45, 6023-6030 (1992).
[CrossRef]

D. S. Citrin, "Mateiral versus optical approaches to exciton polaritons in quantum wells: Formal results," Phys. Rev. B 50, 5497-5503 (1994).
[CrossRef]

L. C. Andreani, "Exciton polaritons in multiple quantum wells," Phys. Lett. A 192, 99-103 (1994).
[CrossRef]

E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, "Light propagation in multiple quantum wells," Phys. Solid State 36, 1156 (1994).

D. S. Citrin, "Radiative lifetimes of excitons in quantum wells: Localization and phase-coherence effects," Phys. Rev. B 47, 3832-3841 (1993).
[CrossRef]

D. S. Citrin, "Self-pulse-shaping coherent control of excitons in a semiconductor microcavity," Phys. Rev. Lett. 77, 4596-4599 (1996).
[CrossRef] [PubMed]

T. Ostreich and A. Knorr, "Nonperturbative scaling behavior of the coherent semiconductor Bloch equations in the low-density regime," Phys. Rev. B 50, 5717-5720 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1(a).
Fig. 1(a).

A(t) for a type-I pulse.

Fig. 1(b).
Fig. 1(b).

��2(t) for a type-I pulse.

Fig. 1(c).
Fig. 1(c).

ℱ(t) for a type-I pulse.

Fig. 2(a).
Fig. 2(a).

A(t) for a type-II pulse. σ =0.1τ.

Fig. 2(b).
Fig. 2(b).

��2(t) for a type-II pulse. σ =0.1τ.

Fig. 2(c).
Fig. 2(c).

ℱ(t) for a type-II pulse. σ =0.1τ.

Fig. 3(a).
Fig. 3(a).

A(t) for a type-Ill pulse. σ =0.1τ.

Fig. 3(b).
Fig. 3(b).

��2(t) for a type-III pulse. σ =0.1τ.

Fig. 3(c).
Fig. 3(c).

ℱ(t) for a type-III pulse. σ =0.1τ.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P opt ( ε , z ) = g e 2 μ 2 F ex ( 0 ) 2 ε E ex + i Γ sc f c * ( z ) f υ ( z ) dz f c ( z ' ) f υ * ( z ) 𝜀 tot ( ε , z )
P opt ( ε ) = g e 2 μ 2 F ex ( 0 ) 2 S 2 ε E ex + i Γ sc 𝜀 tot ( ε , z QW )
P opt ( ε ) = χ ( ε ) 𝜀 inc ( z QW )
P opt ( t ) = dt χ ( t ) 𝜀 inc ( t t ) ,
P opt ( t ) = β 1 e i E ex t / ħ e Γ t / ħ 𝛲 ( t ) ,
𝛲 ( t ) = t dt e Γ t / ħ A ( t )
N coh ( t ) = β 1 1 e 2 Γ t / ħ 𝛲 2 ( t ) .
𝜀 THz ( t ) = 2 d 2 β 1 c 2 r ( t ) ,
( t ) = 1 2 d 2 d t 2 𝛲 2 ( t ) = 𝛲 ˙ 2 ( t ) + 𝛲 ( t ) 𝛲 ̈ ( t ) = A 2 ( t ) + A ˙ ( t ) 𝛲 ( t ) .

Metrics