Abstract

We investigate effects of inhomogeneous broadening of excitons on normal mode oscillation in semiconductor microcavities using a coupled oscillator model. We show that inhomogeneous broadening can drastically alter the coherent oscillatory energy exchange process even in regimes where normal mode splitting remains nearly unchanged. The depth, frequency, and phase of normal mode oscillations of excitons at a given energy within the inhomogeneous distribution depend strongly on the energy separation between the exciton and the normal mode resonance. In addition, for an inhomogeneous broadened system, pronounced oscillations in the intensity of the optical field or the total induced optical polarization no longer imply a similar oscillatory coherent energy exchange between excitons and cavity photons.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large and well-defined Rabi splitting in a semiconductor nanogap cavity

Mitsuharu Uemoto and Hiroshi Ajiki
Opt. Express 22(19) 22470-22478 (2014)

Coherent photonic coupling of semiconductor quantum dots

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke
Opt. Lett. 31(11) 1738-1740 (2006)

Cavity mode emission in weakly coupled quantum dot - cavity systems

T Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa
Opt. Express 17(8) 6643-6654 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 (1992).
    [Crossref] [PubMed]
  2. T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity,” Phys. Rev. B 50, 14663 (1994).
    [Crossref]
  3. J. Jacobson, S. Pau, H. Cao, G. Bjork, and Y. Yamamoto, “Observation of exciton-polariton oscillating emission in a single-quantum-well semiconductor microcavity,” Phys. Rev. A 512542 (1995).
    [Crossref] [PubMed]
  4. Hailin Wang, Jagdeep Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. H. Hong, and J. P. Mannaerts, “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B 51, 14713 (1995).
    [Crossref]
  5. D. Bogavarapu, D. McAlister, A. Anderson, M. Munroe, M. G. Raymer, G. Khitrova, and H. M. Gibbs, “Ultrafast photon statistics of normal mode coupling in a semiconductor microcavity,” Quantum Electronics and Laser Science Conference, OSA Technical Digest 9, 33 (1996).
  6. S. Pau, G. Bjork, H. Cao, E. Hanamura, and Y. Yamamoto, “Theory of inhomogeneous microcavity polariton splitting,” Solid State Commun. 98, 781 (1996).
    [Crossref]
  7. F. Jahnke, M. Ruopp, M. Kira, and S. W. Koch, “Ultrafast pulse propagation and excitonic nonlinearities in semiconductor microcavities,” Adv. in Solid State Phys. 37, accepted for publication (1997).
  8. H. J. Carmichael, “Quantum fluctuations in absorptive bistability without adiabatic elimination,” Phys. Rev. A 33, 3262 (1986).
    [Crossref] [PubMed]
  9. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory,” Phys. Rev. Lett. 64, 2499 (1990).
    [Crossref] [PubMed]
  10. M. Kira, F. Jahnke, and S. W. Koch, “Ultrashort pulse propagation effects in semiconductor microcavities,” Solid State Commun. 102, 703 (1997).
    [Crossref]
  11. R. Zimmermann and E. Runge, “Exciton lineshape in semiconductor quantum structures with interface roughness,” J. Lumin. 60&61, 320 (1994).
    [Crossref]
  12. D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
    [Crossref] [PubMed]
  13. V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, and P. Schwendimann, “Microscopic theory of motional narrowing of microcavity polaritons in a disordered potential,” Phys. Rev. Lett. 78, 4470 (1997).
    [Crossref]
  14. Different line width for lower and upper cavity-polaritons can also be obtained by using the simple coupled-oscillator model and an asymmetric inhomogeneous lineshape.

1997 (3)

F. Jahnke, M. Ruopp, M. Kira, and S. W. Koch, “Ultrafast pulse propagation and excitonic nonlinearities in semiconductor microcavities,” Adv. in Solid State Phys. 37, accepted for publication (1997).

M. Kira, F. Jahnke, and S. W. Koch, “Ultrashort pulse propagation effects in semiconductor microcavities,” Solid State Commun. 102, 703 (1997).
[Crossref]

V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, and P. Schwendimann, “Microscopic theory of motional narrowing of microcavity polaritons in a disordered potential,” Phys. Rev. Lett. 78, 4470 (1997).
[Crossref]

1996 (3)

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
[Crossref] [PubMed]

D. Bogavarapu, D. McAlister, A. Anderson, M. Munroe, M. G. Raymer, G. Khitrova, and H. M. Gibbs, “Ultrafast photon statistics of normal mode coupling in a semiconductor microcavity,” Quantum Electronics and Laser Science Conference, OSA Technical Digest 9, 33 (1996).

S. Pau, G. Bjork, H. Cao, E. Hanamura, and Y. Yamamoto, “Theory of inhomogeneous microcavity polariton splitting,” Solid State Commun. 98, 781 (1996).
[Crossref]

1995 (2)

J. Jacobson, S. Pau, H. Cao, G. Bjork, and Y. Yamamoto, “Observation of exciton-polariton oscillating emission in a single-quantum-well semiconductor microcavity,” Phys. Rev. A 512542 (1995).
[Crossref] [PubMed]

Hailin Wang, Jagdeep Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. H. Hong, and J. P. Mannaerts, “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B 51, 14713 (1995).
[Crossref]

1994 (2)

T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity,” Phys. Rev. B 50, 14663 (1994).
[Crossref]

R. Zimmermann and E. Runge, “Exciton lineshape in semiconductor quantum structures with interface roughness,” J. Lumin. 60&61, 320 (1994).
[Crossref]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 (1992).
[Crossref] [PubMed]

1990 (1)

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory,” Phys. Rev. Lett. 64, 2499 (1990).
[Crossref] [PubMed]

1986 (1)

H. J. Carmichael, “Quantum fluctuations in absorptive bistability without adiabatic elimination,” Phys. Rev. A 33, 3262 (1986).
[Crossref] [PubMed]

Afshar, A.M.

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
[Crossref] [PubMed]

Anderson, A.

D. Bogavarapu, D. McAlister, A. Anderson, M. Munroe, M. G. Raymer, G. Khitrova, and H. M. Gibbs, “Ultrafast photon statistics of normal mode coupling in a semiconductor microcavity,” Quantum Electronics and Laser Science Conference, OSA Technical Digest 9, 33 (1996).

Arakawa, Y.

T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity,” Phys. Rev. B 50, 14663 (1994).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 (1992).
[Crossref] [PubMed]

Armitage, A.

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
[Crossref] [PubMed]

Bjork, G.

S. Pau, G. Bjork, H. Cao, E. Hanamura, and Y. Yamamoto, “Theory of inhomogeneous microcavity polariton splitting,” Solid State Commun. 98, 781 (1996).
[Crossref]

J. Jacobson, S. Pau, H. Cao, G. Bjork, and Y. Yamamoto, “Observation of exciton-polariton oscillating emission in a single-quantum-well semiconductor microcavity,” Phys. Rev. A 512542 (1995).
[Crossref] [PubMed]

Bogavarapu, D.

D. Bogavarapu, D. McAlister, A. Anderson, M. Munroe, M. G. Raymer, G. Khitrova, and H. M. Gibbs, “Ultrafast photon statistics of normal mode coupling in a semiconductor microcavity,” Quantum Electronics and Laser Science Conference, OSA Technical Digest 9, 33 (1996).

Cao, H.

S. Pau, G. Bjork, H. Cao, E. Hanamura, and Y. Yamamoto, “Theory of inhomogeneous microcavity polariton splitting,” Solid State Commun. 98, 781 (1996).
[Crossref]

J. Jacobson, S. Pau, H. Cao, G. Bjork, and Y. Yamamoto, “Observation of exciton-polariton oscillating emission in a single-quantum-well semiconductor microcavity,” Phys. Rev. A 512542 (1995).
[Crossref] [PubMed]

Carmichael, H. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory,” Phys. Rev. Lett. 64, 2499 (1990).
[Crossref] [PubMed]

H. J. Carmichael, “Quantum fluctuations in absorptive bistability without adiabatic elimination,” Phys. Rev. A 33, 3262 (1986).
[Crossref] [PubMed]

Cunningham, J. E.

Hailin Wang, Jagdeep Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. H. Hong, and J. P. Mannaerts, “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B 51, 14713 (1995).
[Crossref]

Damen, T. C.

Hailin Wang, Jagdeep Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. H. Hong, and J. P. Mannaerts, “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B 51, 14713 (1995).
[Crossref]

Fisher, T.A.

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
[Crossref] [PubMed]

Gauthier, D. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory,” Phys. Rev. Lett. 64, 2499 (1990).
[Crossref] [PubMed]

Gibbs, H. M.

D. Bogavarapu, D. McAlister, A. Anderson, M. Munroe, M. G. Raymer, G. Khitrova, and H. M. Gibbs, “Ultrafast photon statistics of normal mode coupling in a semiconductor microcavity,” Quantum Electronics and Laser Science Conference, OSA Technical Digest 9, 33 (1996).

Hanamura, E.

S. Pau, G. Bjork, H. Cao, E. Hanamura, and Y. Yamamoto, “Theory of inhomogeneous microcavity polariton splitting,” Solid State Commun. 98, 781 (1996).
[Crossref]

Hong, M. H.

Hailin Wang, Jagdeep Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. H. Hong, and J. P. Mannaerts, “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B 51, 14713 (1995).
[Crossref]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 (1992).
[Crossref] [PubMed]

Jacobson, J.

J. Jacobson, S. Pau, H. Cao, G. Bjork, and Y. Yamamoto, “Observation of exciton-polariton oscillating emission in a single-quantum-well semiconductor microcavity,” Phys. Rev. A 512542 (1995).
[Crossref] [PubMed]

Jahnke, F.

F. Jahnke, M. Ruopp, M. Kira, and S. W. Koch, “Ultrafast pulse propagation and excitonic nonlinearities in semiconductor microcavities,” Adv. in Solid State Phys. 37, accepted for publication (1997).

M. Kira, F. Jahnke, and S. W. Koch, “Ultrashort pulse propagation effects in semiconductor microcavities,” Solid State Commun. 102, 703 (1997).
[Crossref]

Jan, W. Y.

Hailin Wang, Jagdeep Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. H. Hong, and J. P. Mannaerts, “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B 51, 14713 (1995).
[Crossref]

Khitrova, G.

D. Bogavarapu, D. McAlister, A. Anderson, M. Munroe, M. G. Raymer, G. Khitrova, and H. M. Gibbs, “Ultrafast photon statistics of normal mode coupling in a semiconductor microcavity,” Quantum Electronics and Laser Science Conference, OSA Technical Digest 9, 33 (1996).

Kinsler, P.

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
[Crossref] [PubMed]

Kira, M.

M. Kira, F. Jahnke, and S. W. Koch, “Ultrashort pulse propagation effects in semiconductor microcavities,” Solid State Commun. 102, 703 (1997).
[Crossref]

F. Jahnke, M. Ruopp, M. Kira, and S. W. Koch, “Ultrafast pulse propagation and excitonic nonlinearities in semiconductor microcavities,” Adv. in Solid State Phys. 37, accepted for publication (1997).

Koch, S. W.

F. Jahnke, M. Ruopp, M. Kira, and S. W. Koch, “Ultrafast pulse propagation and excitonic nonlinearities in semiconductor microcavities,” Adv. in Solid State Phys. 37, accepted for publication (1997).

M. Kira, F. Jahnke, and S. W. Koch, “Ultrashort pulse propagation effects in semiconductor microcavities,” Solid State Commun. 102, 703 (1997).
[Crossref]

Mannaerts, J. P.

Hailin Wang, Jagdeep Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. H. Hong, and J. P. Mannaerts, “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B 51, 14713 (1995).
[Crossref]

McAlister, D.

D. Bogavarapu, D. McAlister, A. Anderson, M. Munroe, M. G. Raymer, G. Khitrova, and H. M. Gibbs, “Ultrafast photon statistics of normal mode coupling in a semiconductor microcavity,” Quantum Electronics and Laser Science Conference, OSA Technical Digest 9, 33 (1996).

Morin, S. E.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory,” Phys. Rev. Lett. 64, 2499 (1990).
[Crossref] [PubMed]

Mossberg, T. W.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory,” Phys. Rev. Lett. 64, 2499 (1990).
[Crossref] [PubMed]

Munroe, M.

D. Bogavarapu, D. McAlister, A. Anderson, M. Munroe, M. G. Raymer, G. Khitrova, and H. M. Gibbs, “Ultrafast photon statistics of normal mode coupling in a semiconductor microcavity,” Quantum Electronics and Laser Science Conference, OSA Technical Digest 9, 33 (1996).

Nishioka, M.

T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity,” Phys. Rev. B 50, 14663 (1994).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 (1992).
[Crossref] [PubMed]

Norris, T. B.

T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity,” Phys. Rev. B 50, 14663 (1994).
[Crossref]

Pau, S.

S. Pau, G. Bjork, H. Cao, E. Hanamura, and Y. Yamamoto, “Theory of inhomogeneous microcavity polariton splitting,” Solid State Commun. 98, 781 (1996).
[Crossref]

J. Jacobson, S. Pau, H. Cao, G. Bjork, and Y. Yamamoto, “Observation of exciton-polariton oscillating emission in a single-quantum-well semiconductor microcavity,” Phys. Rev. A 512542 (1995).
[Crossref] [PubMed]

Piermarocchi, C.

V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, and P. Schwendimann, “Microscopic theory of motional narrowing of microcavity polaritons in a disordered potential,” Phys. Rev. Lett. 78, 4470 (1997).
[Crossref]

Quattropani, A.

V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, and P. Schwendimann, “Microscopic theory of motional narrowing of microcavity polaritons in a disordered potential,” Phys. Rev. Lett. 78, 4470 (1997).
[Crossref]

Raymer, M. G.

D. Bogavarapu, D. McAlister, A. Anderson, M. Munroe, M. G. Raymer, G. Khitrova, and H. M. Gibbs, “Ultrafast photon statistics of normal mode coupling in a semiconductor microcavity,” Quantum Electronics and Laser Science Conference, OSA Technical Digest 9, 33 (1996).

Rhee, J. K.

T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity,” Phys. Rev. B 50, 14663 (1994).
[Crossref]

Roberts, J.S.

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
[Crossref] [PubMed]

Runge, E.

R. Zimmermann and E. Runge, “Exciton lineshape in semiconductor quantum structures with interface roughness,” J. Lumin. 60&61, 320 (1994).
[Crossref]

Ruopp, M.

F. Jahnke, M. Ruopp, M. Kira, and S. W. Koch, “Ultrafast pulse propagation and excitonic nonlinearities in semiconductor microcavities,” Adv. in Solid State Phys. 37, accepted for publication (1997).

Savona, V.

V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, and P. Schwendimann, “Microscopic theory of motional narrowing of microcavity polaritons in a disordered potential,” Phys. Rev. Lett. 78, 4470 (1997).
[Crossref]

Schwendimann, P.

V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, and P. Schwendimann, “Microscopic theory of motional narrowing of microcavity polaritons in a disordered potential,” Phys. Rev. Lett. 78, 4470 (1997).
[Crossref]

Shah, Jagdeep

Hailin Wang, Jagdeep Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. H. Hong, and J. P. Mannaerts, “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B 51, 14713 (1995).
[Crossref]

Skolnick, M.S.

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
[Crossref] [PubMed]

Sturge, M.D.

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
[Crossref] [PubMed]

Sung, C. Y.

T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity,” Phys. Rev. B 50, 14663 (1994).
[Crossref]

Tassone, F.

V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, and P. Schwendimann, “Microscopic theory of motional narrowing of microcavity polaritons in a disordered potential,” Phys. Rev. Lett. 78, 4470 (1997).
[Crossref]

Wang, Hailin

Hailin Wang, Jagdeep Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. H. Hong, and J. P. Mannaerts, “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B 51, 14713 (1995).
[Crossref]

Weisbuch, C.

T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity,” Phys. Rev. B 50, 14663 (1994).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 (1992).
[Crossref] [PubMed]

Whittaker, D.M.

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
[Crossref] [PubMed]

Wu, Q.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory,” Phys. Rev. Lett. 64, 2499 (1990).
[Crossref] [PubMed]

Yamamoto, Y.

S. Pau, G. Bjork, H. Cao, E. Hanamura, and Y. Yamamoto, “Theory of inhomogeneous microcavity polariton splitting,” Solid State Commun. 98, 781 (1996).
[Crossref]

J. Jacobson, S. Pau, H. Cao, G. Bjork, and Y. Yamamoto, “Observation of exciton-polariton oscillating emission in a single-quantum-well semiconductor microcavity,” Phys. Rev. A 512542 (1995).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory,” Phys. Rev. Lett. 64, 2499 (1990).
[Crossref] [PubMed]

Zimmermann, R.

R. Zimmermann and E. Runge, “Exciton lineshape in semiconductor quantum structures with interface roughness,” J. Lumin. 60&61, 320 (1994).
[Crossref]

Adv. in Solid State Phys. (1)

F. Jahnke, M. Ruopp, M. Kira, and S. W. Koch, “Ultrafast pulse propagation and excitonic nonlinearities in semiconductor microcavities,” Adv. in Solid State Phys. 37, accepted for publication (1997).

J. Lumin. (1)

R. Zimmermann and E. Runge, “Exciton lineshape in semiconductor quantum structures with interface roughness,” J. Lumin. 60&61, 320 (1994).
[Crossref]

Phys. Rev. A (2)

H. J. Carmichael, “Quantum fluctuations in absorptive bistability without adiabatic elimination,” Phys. Rev. A 33, 3262 (1986).
[Crossref] [PubMed]

J. Jacobson, S. Pau, H. Cao, G. Bjork, and Y. Yamamoto, “Observation of exciton-polariton oscillating emission in a single-quantum-well semiconductor microcavity,” Phys. Rev. A 512542 (1995).
[Crossref] [PubMed]

Phys. Rev. B (2)

Hailin Wang, Jagdeep Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. H. Hong, and J. P. Mannaerts, “Coherent oscillations in semiconductor microcavities,” Phys. Rev. B 51, 14713 (1995).
[Crossref]

T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity,” Phys. Rev. B 50, 14663 (1994).
[Crossref]

Phys. Rev. Lett. (4)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 (1992).
[Crossref] [PubMed]

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996).
[Crossref] [PubMed]

V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, and P. Schwendimann, “Microscopic theory of motional narrowing of microcavity polaritons in a disordered potential,” Phys. Rev. Lett. 78, 4470 (1997).
[Crossref]

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory,” Phys. Rev. Lett. 64, 2499 (1990).
[Crossref] [PubMed]

Quantum Electronics and Laser Science Conference, OSA Technical Digest (1)

D. Bogavarapu, D. McAlister, A. Anderson, M. Munroe, M. G. Raymer, G. Khitrova, and H. M. Gibbs, “Ultrafast photon statistics of normal mode coupling in a semiconductor microcavity,” Quantum Electronics and Laser Science Conference, OSA Technical Digest 9, 33 (1996).

Solid State Commun. (2)

S. Pau, G. Bjork, H. Cao, E. Hanamura, and Y. Yamamoto, “Theory of inhomogeneous microcavity polariton splitting,” Solid State Commun. 98, 781 (1996).
[Crossref]

M. Kira, F. Jahnke, and S. W. Koch, “Ultrashort pulse propagation effects in semiconductor microcavities,” Solid State Commun. 102, 703 (1997).
[Crossref]

Other (1)

Different line width for lower and upper cavity-polaritons can also be obtained by using the simple coupled-oscillator model and an asymmetric inhomogeneous lineshape.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Transmission spectra (normalized) for composite exciton-cavity systems. All parameters are normalized to Ω (taken to be 1 ps-1 or 3.4 Å). For the black curve (inhomogeneously broadened), Γinh=κ=0.5 and γ=0.05. For the red curve (homogeneously broadened), γ=κ=0.5 and Γinh=0.01. (b) The inhomogeneous distribution used in calculating the black curve in (a).

Fig. 2.
Fig. 2.

(a) Normal mode oscillation for an inhomogeneously broadened system in the intensity of the field (black curve) and polarization (red curve). (b) Normal mode oscillation in the total exciton population. Γ=2γ and other parameters used are the same as in Fig. 1.

Fig. 3.
Fig. 3.

Normal mode oscillation in the intensity of the polarization (a) and in the exciton population (b). The top figures show the oscillation in the total polarization and population shown in Fig. 2. The bottom figures are for an exciton within the inhomogeneous distribution. The wavelength used (from bottom to top) is 800, 800.03, 800.07, 800.1, 800.14, 800.17, and 800.27 nm, respectively. Successive curves are displaced by half a decade in the log plot.

Fig. 4.
Fig. 4.

Normal mode oscillation in the total exciton population in microcavities with κ=0.5 and γ =0.05 and with Γinh=0.2, 0.3, 0.4, 0.5 (from green to red).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α ˙ = ( i ω c + κ ) α + Ω dωf ( ω ) β ( ω ) + κε ( t ) ( 1 )
β ˙ ( ω ) = ( + γ ) β ( ω ) Ω α
n ˙ ( ω ) = Γ n ( ω ) Ω [ α * f ( ω ) β ( ω ) + c . c . ]

Metrics