Abstract

In order for diffuse optical tomography to realize its potential of obtaining quantitative images of spatially varying optical properties within random media, several potential experimental systematic errors must be overcome. One of these errors is the calibration of the emitter strength and detector efficiency/gain. While in principle these parameters can be determined accurately prior to an imaging experiment, slight fluctuations will cause significant image artifacts. For this reason, it is necessary to consider including their calibration as part of the inverse problem for image reconstruction. In this paper, we show that this can be done successfully in a linear reconstruction model with simulated continuous-wave data. The technique is general for frequency and time domain data.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers,“Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1143–1158 (1999).
    [CrossRef]
  2. S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, and M. R. Stankoivic,“Non-invasive optical imaging of the piglet brain in real time,” Opt. Express 4, 308–314 (1999).
    [CrossRef] [PubMed]
  3. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance,“Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc Natl Acad Sci U S A 97, 2767–72 (2000).
    [CrossRef] [PubMed]
  4. M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fanini,“On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6, 49–57 (2000).
    [CrossRef] [PubMed]
  5. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, and U. L. Osterberg,“Hemoglobin imaging of breast tumors with near-infrared tomography,” Radiology214, (in press).
  6. S. R. Arridge,“Optical Tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
    [CrossRef]
  7. J. C. Hebden, E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge,“Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 334–336 (1999).
    [CrossRef]
  8. M. Schweiger and S. R. Arridge,“Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys Med Biol 44, 2703–21 (1999).
    [CrossRef] [PubMed]
  9. V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge,“Recovery of Piecewise constant coefficients in optical diffusion tomography,” Opt. Express 7:468–480 (2000).
    [CrossRef] [PubMed]
  10. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef]
  11. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, SPIE1888, 360–371 (1993).
  12. M. Schweiger, S. R. Arridge, and D. T. Delpy,“Application of the finite-element method for the forward and inverse models in optical tomography,” Journal of Mathematical Imaging and Vision 3, 263–283 (1993).
    [CrossRef]
  13. S. R. Arridge and M. Schweiger, “Inverse Methods for Optical Tomography” in Information Processing in Medical Imaging (IPMI’93 Proceedings), Lecture Notes in Computer Science, (Springer-Verlag, 1993).
  14. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen,“Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
    [CrossRef]
  15. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, Inc., San Diego1978).
  16. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  17. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg,“Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11, 2727–2741 (1994).
    [CrossRef]
  18. K. Furutsu and Y. Yamada,“Diffusion approximation for a dissipative random medium and the applications,” Phys.Rev.E 50, 3634 (1994).
    [CrossRef]
  19. T. Durduran, B. Chance, A. G. Yodh, and D. A. Boas, “Does the photon diffusion coefficient depend on absorption?,” J. Opt. Soc. Am. A 14, 3358–3365 (1997).
    [CrossRef]
  20. D. J. Durian, “The diffusion coefficient depends on absorption,” Optics Letters 23, 1502–1504 (1998).
    [CrossRef]
  21. R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16, 1066–1071 (1999).
    [CrossRef]
  22. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York1988).
  23. S. R. Arridge, M. Cope, and D. T. Delpy,“The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys Med Biol 37, 1531–60 (1992).
    [CrossRef] [PubMed]
  24. H. Dehghani, D. C. Barber, and I. Basarab-Horwath, “Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography,” Physiol Meas 20, 87–102 (1999).
    [CrossRef] [PubMed]
  25. V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen, and J. P. Kaipio,“Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns,” Physiol Meas 18, 289–303 (1997).
    [CrossRef] [PubMed]

2000 (3)

1999 (8)

S. R. Arridge,“Optical Tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[CrossRef]

J. C. Hebden, E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge,“Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 334–336 (1999).
[CrossRef]

M. Schweiger and S. R. Arridge,“Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys Med Biol 44, 2703–21 (1999).
[CrossRef] [PubMed]

H. Dehghani, D. C. Barber, and I. Basarab-Horwath, “Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography,” Physiol Meas 20, 87–102 (1999).
[CrossRef] [PubMed]

R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16, 1066–1071 (1999).
[CrossRef]

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers,“Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1143–1158 (1999).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen,“Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, and M. R. Stankoivic,“Non-invasive optical imaging of the piglet brain in real time,” Opt. Express 4, 308–314 (1999).
[CrossRef] [PubMed]

1998 (1)

D. J. Durian, “The diffusion coefficient depends on absorption,” Optics Letters 23, 1502–1504 (1998).
[CrossRef]

1997 (2)

T. Durduran, B. Chance, A. G. Yodh, and D. A. Boas, “Does the photon diffusion coefficient depend on absorption?,” J. Opt. Soc. Am. A 14, 3358–3365 (1997).
[CrossRef]

V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen, and J. P. Kaipio,“Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns,” Physiol Meas 18, 289–303 (1997).
[CrossRef] [PubMed]

1995 (1)

1994 (2)

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg,“Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11, 2727–2741 (1994).
[CrossRef]

K. Furutsu and Y. Yamada,“Diffusion approximation for a dissipative random medium and the applications,” Phys.Rev.E 50, 3634 (1994).
[CrossRef]

1993 (1)

M. Schweiger, S. R. Arridge, and D. T. Delpy,“Application of the finite-element method for the forward and inverse models in optical tomography,” Journal of Mathematical Imaging and Vision 3, 263–283 (1993).
[CrossRef]

1992 (1)

S. R. Arridge, M. Cope, and D. T. Delpy,“The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys Med Biol 37, 1531–60 (1992).
[CrossRef] [PubMed]

1989 (1)

Aronson, R.

Arridge, S. R.

V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge,“Recovery of Piecewise constant coefficients in optical diffusion tomography,” Opt. Express 7:468–480 (2000).
[CrossRef] [PubMed]

S. R. Arridge,“Optical Tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[CrossRef]

M. Schweiger and S. R. Arridge,“Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys Med Biol 44, 2703–21 (1999).
[CrossRef] [PubMed]

J. C. Hebden, E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge,“Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 334–336 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, and D. T. Delpy,“Application of the finite-element method for the forward and inverse models in optical tomography,” Journal of Mathematical Imaging and Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Cope, and D. T. Delpy,“The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys Med Biol 37, 1531–60 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, SPIE1888, 360–371 (1993).

S. R. Arridge and M. Schweiger, “Inverse Methods for Optical Tomography” in Information Processing in Medical Imaging (IPMI’93 Proceedings), Lecture Notes in Computer Science, (Springer-Verlag, 1993).

Barber, D. C.

H. Dehghani, D. C. Barber, and I. Basarab-Horwath, “Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography,” Physiol Meas 20, 87–102 (1999).
[CrossRef] [PubMed]

Basarab-Horwath, I.

H. Dehghani, D. C. Barber, and I. Basarab-Horwath, “Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography,” Physiol Meas 20, 87–102 (1999).
[CrossRef] [PubMed]

Boas, D. A.

Chance, B.

Colak, S. B.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers,“Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1143–1158 (1999).
[CrossRef]

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy,“The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys Med Biol 37, 1531–60 (1992).
[CrossRef] [PubMed]

Corngold, N.

Dehghani, H.

H. Dehghani, D. C. Barber, and I. Basarab-Horwath, “Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography,” Physiol Meas 20, 87–102 (1999).
[CrossRef] [PubMed]

Delpy, D. T.

J. C. Hebden, E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge,“Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 334–336 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, and D. T. Delpy,“Application of the finite-element method for the forward and inverse models in optical tomography,” Journal of Mathematical Imaging and Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Cope, and D. T. Delpy,“The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys Med Biol 37, 1531–60 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, SPIE1888, 360–371 (1993).

Durduran, T.

Durian, D. J.

D. J. Durian, “The diffusion coefficient depends on absorption,” Optics Letters 23, 1502–1504 (1998).
[CrossRef]

Fanini, S.

Fantini, S.

Feng, T.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg,“Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11, 2727–2741 (1994).
[CrossRef]

Filiaci, M.

Franceschini, M. A.

Fry, M. E.

J. C. Hebden, E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge,“Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 334–336 (1999).
[CrossRef]

Furutsu, K.

K. Furutsu and Y. Yamada,“Diffusion approximation for a dissipative random medium and the applications,” Phys.Rev.E 50, 3634 (1994).
[CrossRef]

Gratton, E.

Haskell, R. C.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg,“Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11, 2727–2741 (1994).
[CrossRef]

Hebden, J. C.

J. C. Hebden, E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge,“Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 334–336 (1999).
[CrossRef]

Hillman, E. M. C.

J. C. Hebden, E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge,“Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 334–336 (1999).
[CrossRef]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, SPIE1888, 360–371 (1993).

Hooft, G. W.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers,“Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1143–1158 (1999).
[CrossRef]

Hoogenraad, J. H.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers,“Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1143–1158 (1999).
[CrossRef]

Hueber, D.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, Inc., San Diego1978).

Kaipio, J. P.

V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge,“Recovery of Piecewise constant coefficients in optical diffusion tomography,” Opt. Express 7:468–480 (2000).
[CrossRef] [PubMed]

V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen, and J. P. Kaipio,“Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns,” Physiol Meas 18, 289–303 (1997).
[CrossRef] [PubMed]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York1988).

Karjalainen, P. A.

V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen, and J. P. Kaipio,“Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns,” Physiol Meas 18, 289–303 (1997).
[CrossRef] [PubMed]

Kolehmainen, V.

V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge,“Recovery of Piecewise constant coefficients in optical diffusion tomography,” Opt. Express 7:468–480 (2000).
[CrossRef] [PubMed]

V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen, and J. P. Kaipio,“Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns,” Physiol Meas 18, 289–303 (1997).
[CrossRef] [PubMed]

Kuijpers, F. A.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers,“Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1143–1158 (1999).
[CrossRef]

Maulik, D.

McAdams, M. S.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg,“Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11, 2727–2741 (1994).
[CrossRef]

McBride, T. O.

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen,“Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, and U. L. Osterberg,“Hemoglobin imaging of breast tumors with near-infrared tomography,” Radiology214, (in press).

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance,“Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc Natl Acad Sci U S A 97, 2767–72 (2000).
[CrossRef] [PubMed]

O’Leary, M. A.

Osterberg, U. L.

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen,“Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, and U. L. Osterberg,“Hemoglobin imaging of breast tumors with near-infrared tomography,” Radiology214, (in press).

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, and U. L. Osterberg,“Hemoglobin imaging of breast tumors with near-infrared tomography,” Radiology214, (in press).

Patterson, M. S.

Paulsen, K. D.

Pogue, B. W.

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen,“Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, and U. L. Osterberg,“Hemoglobin imaging of breast tumors with near-infrared tomography,” Radiology214, (in press).

Poplack, S. P.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, and U. L. Osterberg,“Hemoglobin imaging of breast tumors with near-infrared tomography,” Radiology214, (in press).

Prewitt, J.

Rosenfeld, W.

Schmidt, E. W.

J. C. Hebden, E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge,“Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 334–336 (1999).
[CrossRef]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance,“Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc Natl Acad Sci U S A 97, 2767–72 (2000).
[CrossRef] [PubMed]

Schweiger, M.

J. C. Hebden, E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge,“Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 334–336 (1999).
[CrossRef]

M. Schweiger and S. R. Arridge,“Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys Med Biol 44, 2703–21 (1999).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, and D. T. Delpy,“Application of the finite-element method for the forward and inverse models in optical tomography,” Journal of Mathematical Imaging and Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge and M. Schweiger, “Inverse Methods for Optical Tomography” in Information Processing in Medical Imaging (IPMI’93 Proceedings), Lecture Notes in Computer Science, (Springer-Verlag, 1993).

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, SPIE1888, 360–371 (1993).

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York1988).

Stankoivic, M. R.

Stubblefield, P. G.

Svaasand, L. O.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg,“Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11, 2727–2741 (1994).
[CrossRef]

Toronov, V.

Tromberg, B. J.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg,“Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11, 2727–2741 (1994).
[CrossRef]

Tsay, T.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg,“Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11, 2727–2741 (1994).
[CrossRef]

van der Linden, E. S.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers,“Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1143–1158 (1999).
[CrossRef]

van der Mark, M. B.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers,“Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1143–1158 (1999).
[CrossRef]

Vauhkonen, M.

V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge,“Recovery of Piecewise constant coefficients in optical diffusion tomography,” Opt. Express 7:468–480 (2000).
[CrossRef] [PubMed]

V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen, and J. P. Kaipio,“Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns,” Physiol Meas 18, 289–303 (1997).
[CrossRef] [PubMed]

Wells, W. A.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, and U. L. Osterberg,“Hemoglobin imaging of breast tumors with near-infrared tomography,” Radiology214, (in press).

Wilson, B. C.

Yamada, Y.

K. Furutsu and Y. Yamada,“Diffusion approximation for a dissipative random medium and the applications,” Phys.Rev.E 50, 3634 (1994).
[CrossRef]

Yodh, A. G.

Appl. Opt. (2)

IEEE Journal of Selected Topics in Quantum Electronics (1)

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers,“Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum Electronics 5, 1143–1158 (1999).
[CrossRef]

Inverse Problems (1)

S. R. Arridge,“Optical Tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

J.Opt.Soc.of Am.A (1)

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg,“Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11, 2727–2741 (1994).
[CrossRef]

Journal of Mathematical Imaging and Vision (1)

M. Schweiger, S. R. Arridge, and D. T. Delpy,“Application of the finite-element method for the forward and inverse models in optical tomography,” Journal of Mathematical Imaging and Vision 3, 263–283 (1993).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

J. C. Hebden, E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, and S. R. Arridge,“Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 334–336 (1999).
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

Optics Letters (1)

D. J. Durian, “The diffusion coefficient depends on absorption,” Optics Letters 23, 1502–1504 (1998).
[CrossRef]

Phys Med Biol (2)

S. R. Arridge, M. Cope, and D. T. Delpy,“The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys Med Biol 37, 1531–60 (1992).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge,“Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys Med Biol 44, 2703–21 (1999).
[CrossRef] [PubMed]

Phys.Rev.E (1)

K. Furutsu and Y. Yamada,“Diffusion approximation for a dissipative random medium and the applications,” Phys.Rev.E 50, 3634 (1994).
[CrossRef]

Physiol Meas (2)

H. Dehghani, D. C. Barber, and I. Basarab-Horwath, “Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography,” Physiol Meas 20, 87–102 (1999).
[CrossRef] [PubMed]

V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen, and J. P. Kaipio,“Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns,” Physiol Meas 18, 289–303 (1997).
[CrossRef] [PubMed]

Proc Natl Acad Sci U S A (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance,“Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc Natl Acad Sci U S A 97, 2767–72 (2000).
[CrossRef] [PubMed]

Other (5)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, and U. L. Osterberg,“Hemoglobin imaging of breast tumors with near-infrared tomography,” Radiology214, (in press).

S. R. Arridge and M. Schweiger, “Inverse Methods for Optical Tomography” in Information Processing in Medical Imaging (IPMI’93 Proceedings), Lecture Notes in Computer Science, (Springer-Verlag, 1993).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, Inc., San Diego1978).

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, SPIE1888, 360–371 (1993).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Illustration of experimental geometry with the absorbing object.

Fig. 2.
Fig. 2.

Absorption image reconstructions from simulated data with uncertainty in the source and detector strengths of 0%, 40%, and 80% in a/d, b/e, and c/f respectively. The images span X and Y from -3 to 3 cm and Z-slices are indicated from 0.5 to 5.5 cm. Reconstructions without consideration for the uncertainty in the optode coupling strengths are shown in a-c. d-f show the results when simultaneously reconstructing the optode strengths.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

· ( D ( r ) Φ ( r , t ) ) + v μ a ( r ) Φ ( r , t ) + Φ ( r , t ) t = vS ( r , t ) .
Φ = Φ ο + Φ pert
Φ = Φ o exp ( Φ pert ) .
Φ pert ( r s , r d ) = 1 Φ o ( r s , r d ) Φ o ( r s , r ) v δ μ a ( r ) D o G ( r , r d ) d r .
Φ o ( r s , r d ) = sd G ( r s , r d ) .
F ( x ) = i = 1 N meas [ ln Φ Theory, i ( x ) ln Φ Meas, i ] 2
x ̂ = A T ( AA T + λI ) 1 y ,
y i = ln [ Φ ( r s , i , r d , i ) Φ o ( r s , i , r d , i ) ] = ln [ s k ( i ) ] + ln [ d l ( i ) ] + j A i , j δμ a , j .
ξ = [ δμ a , 1 μ ao δμ a , N v μ ao ln s 1 ln s N s ln d 1 ln d N d ] .
[ S D ] = [ 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 ] .

Metrics