Abstract

Diffuse optical tomography (DOT) can image spatial variations in highly scattering optical media. We have built an inexpensive and portable continuous-wave DOT system containing 18 laser diode sources (9 at 780nm and 9 at 830nm) and 16 silicon detectors, which can acquire 288 independent measurements in less than 4 seconds. These data can then be processed using a variety of imaging algorithms. We first discuss the design of diffuse imaging equipment in general, and then describe our instrument, along with the technical issues that influenced its design. The technical challenges involved in performing DOT over large optode areas are discussed. We also present rat brain measurements following electrical forepaw stimulation using DOT. These results clearly demonstrate the capabilities of DOT and set the stage for advancement to quantitative functional brain imaging.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-domain multiplexing system for in vivo diffuse light measurements of rapid cerebral hemodynamics

Guoqiang Yu, Turgut Durduran, Daisuke Furuya, Joel H. Greenberg, and Arjun G. Yodh
Appl. Opt. 42(16) 2931-2939 (2003)

Volumetric diffuse optical tomography of brain activity

Joseph P. Culver, Andrew M. Siegel, Jonathan J. Stott, and David A. Boas
Opt. Lett. 28(21) 2061-2063 (2003)

Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

Sava Sakadžić, Shuai Yuan, Ergin Dilekoz, Svetlana Ruvinskaya, Sergei A. Vinogradov, Cenk Ayata, and David A. Boas
Appl. Opt. 48(10) D169-D177 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
    [Crossref]
  2. S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Bio. 42, 841–854 (1997).
    [Crossref]
  3. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Bio. 42, 825–840 (1997).
    [Crossref]
  4. P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. USA 83, 1140–4 (1986).
    [Crossref] [PubMed]
  5. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
    [Crossref] [PubMed]
  6. S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 87, 9868–72 (1990).
    [Crossref] [PubMed]
  7. S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
    [Crossref] [PubMed]
  8. R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography:prospects and computation for a new imaging method,” IEEE Computation Science and Engineering 2, 63–77 (1995).
    [Crossref]
  9. B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998).
    [Crossref]
  10. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391–403 (1997). http://epubs.osa.org/oearchive/source/2827.htm
    [Crossref] [PubMed]
  11. N. Ramanujam, C. Du, Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instru. 69, 3042–3054 (1998).
    [Crossref]
  12. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scattering in human tissues,” Rev. Sci. Instru. 689, 3457–3481 (1998).
    [Crossref]
  13. P. N. den Outer, T. M. Nieuwenhuizen, and A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10, 1209–1218 (1993).
    [Crossref]
  14. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
    [Crossref] [PubMed]
  15. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [Crossref] [PubMed]
  16. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
    [Crossref]
  17. J. B. Fishkin and E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing ‘semi-infinite’ plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
    [Crossref] [PubMed]
  18. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci 20, 435–442 (1997).
    [Crossref] [PubMed]
  19. G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
    [Crossref] [PubMed]
  20. B. Chance, A. Endla, N. Shoko, Z. Shuoming, H. Long, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998). http://epubs.osa.org/oearchive/source/4445.htm
    [Crossref] [PubMed]
  21. M. Kohl, U. Lindauer, U. Dirnagl, and A. Villringer, “Separation of changes in light scattering and chromophore concentrations during cortical spreading depression in rats,” Opt. Lett. 23, 555–557 (1998).
    [Crossref]
  22. J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, and R. M. Weisskoff, “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” MRM 39, 615–624 (1998).
  23. J. B. Mandeville, J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, and B. R. Rosen, “An MRI Measurement of the Temporal Evolution of Relative CMRO2 During Rat Forepaw Stimulation,” Magn. Reson. Med. In Review, (1999).
  24. J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen, and J. B. Mandeville, “Investigation of the Early Response to Rat Forepaw Stimulation,” Magn. Reson. Med. In Press, (1999).
  25. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York,1988).
  26. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [Crossref]

1998 (6)

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998).
[Crossref]

N. Ramanujam, C. Du, Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instru. 69, 3042–3054 (1998).
[Crossref]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scattering in human tissues,” Rev. Sci. Instru. 689, 3457–3481 (1998).
[Crossref]

B. Chance, A. Endla, N. Shoko, Z. Shuoming, H. Long, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998). http://epubs.osa.org/oearchive/source/4445.htm
[Crossref] [PubMed]

M. Kohl, U. Lindauer, U. Dirnagl, and A. Villringer, “Separation of changes in light scattering and chromophore concentrations during cortical spreading depression in rats,” Opt. Lett. 23, 555–557 (1998).
[Crossref]

J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, and R. M. Weisskoff, “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” MRM 39, 615–624 (1998).

1997 (5)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci 20, 435–442 (1997).
[Crossref] [PubMed]

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391–403 (1997). http://epubs.osa.org/oearchive/source/2827.htm
[Crossref] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Bio. 42, 841–854 (1997).
[Crossref]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Bio. 42, 825–840 (1997).
[Crossref]

1995 (3)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[Crossref]

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography:prospects and computation for a new imaging method,” IEEE Computation Science and Engineering 2, 63–77 (1995).
[Crossref]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[Crossref]

1994 (1)

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[Crossref] [PubMed]

1993 (2)

1992 (3)

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[Crossref]

S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
[Crossref] [PubMed]

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

1990 (1)

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 87, 9868–72 (1990).
[Crossref] [PubMed]

1989 (1)

1986 (1)

P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. USA 83, 1140–4 (1986).
[Crossref] [PubMed]

Aronson, R.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography:prospects and computation for a new imaging method,” IEEE Computation Science and Engineering 2, 63–77 (1995).
[Crossref]

Arridge, S. R.

S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Bio. 42, 841–854 (1997).
[Crossref]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Bio. 42, 825–840 (1997).
[Crossref]

Ayata, C.

J. B. Mandeville, J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, and B. R. Rosen, “An MRI Measurement of the Temporal Evolution of Relative CMRO2 During Rat Forepaw Stimulation,” Magn. Reson. Med. In Review, (1999).

J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen, and J. B. Mandeville, “Investigation of the Early Response to Rat Forepaw Stimulation,” Magn. Reson. Med. In Press, (1999).

Barbour, R. L.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography:prospects and computation for a new imaging method,” IEEE Computation Science and Engineering 2, 63–77 (1995).
[Crossref]

Barbour, S. S.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography:prospects and computation for a new imaging method,” IEEE Computation Science and Engineering 2, 63–77 (1995).
[Crossref]

Belliveau, J. W.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Boas, D. A.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[Crossref]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[Crossref] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[Crossref]

Brady, T. J.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Chance, B.

N. Ramanujam, C. Du, Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instru. 69, 3042–3054 (1998).
[Crossref]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scattering in human tissues,” Rev. Sci. Instru. 689, 3457–3481 (1998).
[Crossref]

B. Chance, A. Endla, N. Shoko, Z. Shuoming, H. Long, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998). http://epubs.osa.org/oearchive/source/4445.htm
[Crossref] [PubMed]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci 20, 435–442 (1997).
[Crossref] [PubMed]

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[Crossref]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[Crossref]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[Crossref] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[Crossref]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

Chang, J.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography:prospects and computation for a new imaging method,” IEEE Computation Science and Engineering 2, 63–77 (1995).
[Crossref]

Cheng, H.-M.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Chesler, D. A.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Cohen, M. S.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Cope, M.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scattering in human tissues,” Rev. Sci. Instru. 689, 3457–3481 (1998).
[Crossref]

Corballis, P. M.

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

Delpy, D. T.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Bio. 42, 825–840 (1997).
[Crossref]

Dirnagl, U.

Du, C.

N. Ramanujam, C. Du, Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instru. 69, 3042–3054 (1998).
[Crossref]

Ellermann, J.

S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
[Crossref] [PubMed]

Endla, A.

Fabiani, M.

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

Fishkin, J. B.

Fox, P. T.

P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. USA 83, 1140–4 (1986).
[Crossref] [PubMed]

Friedman, D.

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

Goldberg, I. E.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Goodman-Wood, M. R.

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

Graber, H. L.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography:prospects and computation for a new imaging method,” IEEE Computation Science and Engineering 2, 63–77 (1995).
[Crossref]

Gratton, E.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scattering in human tissues,” Rev. Sci. Instru. 689, 3457–3481 (1998).
[Crossref]

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

J. B. Fishkin and E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing ‘semi-infinite’ plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[Crossref] [PubMed]

Gratton, G.

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

Hebden, J. C.

S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Bio. 42, 841–854 (1997).
[Crossref]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Bio. 42, 825–840 (1997).
[Crossref]

Hirsch, J.

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

Hood, D. C.

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

Hoppel, B. E.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York,1988).

Kay, A. R.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 87, 9868–72 (1990).
[Crossref] [PubMed]

Keltner, J. R.

J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, and R. M. Weisskoff, “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” MRM 39, 615–624 (1998).

Kennedy, D. N.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Kim, K.

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

Kim, S.-G.

S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
[Crossref] [PubMed]

Kohl, M.

Koo, P. C.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography:prospects and computation for a new imaging method,” IEEE Computation Science and Engineering 2, 63–77 (1995).
[Crossref]

Kosofsky, B. E.

J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, and R. M. Weisskoff, “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” MRM 39, 615–624 (1998).

Kwong, K. K.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Lagendijk, A.

Lee, T. M.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 87, 9868–72 (1990).
[Crossref] [PubMed]

Li, C.

Lindauer, U.

Long, H.

Ma, Y.

N. Ramanujam, C. Du, Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instru. 69, 3042–3054 (1998).
[Crossref]

Mandeville, J. B.

J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, and R. M. Weisskoff, “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” MRM 39, 615–624 (1998).

J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen, and J. B. Mandeville, “Investigation of the Early Response to Rat Forepaw Stimulation,” Magn. Reson. Med. In Press, (1999).

J. B. Mandeville, J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, and B. R. Rosen, “An MRI Measurement of the Temporal Evolution of Relative CMRO2 During Rat Forepaw Stimulation,” Magn. Reson. Med. In Review, (1999).

Marota, J. J. A.

J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, and R. M. Weisskoff, “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” MRM 39, 615–624 (1998).

J. B. Mandeville, J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, and B. R. Rosen, “An MRI Measurement of the Temporal Evolution of Relative CMRO2 During Rat Forepaw Stimulation,” Magn. Reson. Med. In Review, (1999).

J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen, and J. B. Mandeville, “Investigation of the Early Response to Rat Forepaw Stimulation,” Magn. Reson. Med. In Press, (1999).

McBride, T.

Menon, R.

S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
[Crossref] [PubMed]

Merkel, H.

S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
[Crossref] [PubMed]

Moskowitz, M. A.

J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen, and J. B. Mandeville, “Investigation of the Early Response to Rat Forepaw Stimulation,” Magn. Reson. Med. In Press, (1999).

J. B. Mandeville, J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, and B. R. Rosen, “An MRI Measurement of the Temporal Evolution of Relative CMRO2 During Rat Forepaw Stimulation,” Magn. Reson. Med. In Review, (1999).

Murray, T.

Nieuwenhuizen, T. M.

O’Leary, M. A.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[Crossref]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[Crossref] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[Crossref]

Ogawa, S.

S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
[Crossref] [PubMed]

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 87, 9868–72 (1990).
[Crossref] [PubMed]

Osterberg, U.

Outer, P. N. den

Ovetsky, Y.

Patterson, M. S.

Paulsen, K.

Paulsen, K. D.

Pidikiti, D.

Pogue, B. W.

Poncelet, B. P.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Raichle, M. E.

P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. USA 83, 1140–4 (1986).
[Crossref] [PubMed]

Ramanujam, N.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scattering in human tissues,” Rev. Sci. Instru. 689, 3457–3481 (1998).
[Crossref]

N. Ramanujam, C. Du, Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instru. 69, 3042–3054 (1998).
[Crossref]

Rosen, B. R.

J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, and R. M. Weisskoff, “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” MRM 39, 615–624 (1998).

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

J. B. Mandeville, J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, and B. R. Rosen, “An MRI Measurement of the Temporal Evolution of Relative CMRO2 During Rat Forepaw Stimulation,” Magn. Reson. Med. In Review, (1999).

J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen, and J. B. Mandeville, “Investigation of the Early Response to Rat Forepaw Stimulation,” Magn. Reson. Med. In Press, (1999).

Shoko, N.

Shuoming, Z.

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York,1988).

Tank, D.

S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
[Crossref] [PubMed]

Tank, D. W.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 87, 9868–72 (1990).
[Crossref] [PubMed]

Testorf, M.

Thomas, R.

Tromberg, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scattering in human tissues,” Rev. Sci. Instru. 689, 3457–3481 (1998).
[Crossref]

Turner, R.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

Ugurbil, K.

S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
[Crossref] [PubMed]

Villringer, A.

Weisskoff, R. M.

J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, and R. M. Weisskoff, “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” MRM 39, 615–624 (1998).

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

J. B. Mandeville, J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, and B. R. Rosen, “An MRI Measurement of the Temporal Evolution of Relative CMRO2 During Rat Forepaw Stimulation,” Magn. Reson. Med. In Review, (1999).

J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen, and J. B. Mandeville, “Investigation of the Early Response to Rat Forepaw Stimulation,” Magn. Reson. Med. In Press, (1999).

Weissleder, R.

J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, and R. M. Weisskoff, “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” MRM 39, 615–624 (1998).

Wilson, B. C.

Worden, K.

Yodh, A.

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[Crossref]

Yodh, A. G.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[Crossref]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[Crossref] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[Crossref]

Appl. Opt. (1)

IEEE Computation Science and Engineering (1)

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, and R. Aronson, “MRI-guided optical tomography:prospects and computation for a new imaging method,” IEEE Computation Science and Engineering 2, 63–77 (1995).
[Crossref]

J. Opt. Soc. Am. A (2)

MRM (1)

J. B. Mandeville, J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Weissleder, B. R. Rosen, and R. M. Weisskoff, “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” MRM 39, 615–624 (1998).

NeuroImage (1)

G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.,” NeuroImage 6, 168–180 (1997).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Med. Bio. (2)

S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Bio. 42, 841–854 (1997).
[Crossref]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Bio. 42, 825–840 (1997).
[Crossref]

Phys. Rev. Lett. (1)

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[Crossref]

Phys. Today (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[Crossref]

Proc. Natl. Acad. Sci. USA (5)

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[Crossref] [PubMed]

P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. USA 83, 1140–4 (1986).
[Crossref] [PubMed]

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–9 (1992).
[Crossref] [PubMed]

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 87, 9868–72 (1990).
[Crossref] [PubMed]

S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
[Crossref] [PubMed]

Rev. Sci. Instru. (2)

N. Ramanujam, C. Du, Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instru. 69, 3042–3054 (1998).
[Crossref]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scattering in human tissues,” Rev. Sci. Instru. 689, 3457–3481 (1998).
[Crossref]

Trends Neurosci (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci 20, 435–442 (1997).
[Crossref] [PubMed]

Other (3)

J. B. Mandeville, J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, and B. R. Rosen, “An MRI Measurement of the Temporal Evolution of Relative CMRO2 During Rat Forepaw Stimulation,” Magn. Reson. Med. In Review, (1999).

J. J. A. Marota, C. Ayata, M. A. Moskowitz, R. M. Weisskoff, B. R. Rosen, and J. B. Mandeville, “Investigation of the Early Response to Rat Forepaw Stimulation,” Magn. Reson. Med. In Press, (1999).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York,1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

A block diagram of the prototype DOT imager. All functions, including source and detector selection, are computer-controlled.

Fig. 2.
Fig. 2.

DOT images of rat brain function at the peak response following 45 seconds of electrical forepaw stimulation. The recovery to baseline is shown 50 seconds following cessation of activation. Dark blue represents a change in the absorption coefficient of 0 cm-1 while dark red represents a change of 0.004 cm-1.

Fig 3.
Fig 3.

The schematic diagram of a single detector phase diversity prototype system. A four-channel version was developed to evaluate phase diversity in more complex two-wavelength systems.

Tables (2)

Tables Icon

Table 1. Our performance goals for the prototype DOT imager.

Tables Icon

Table 2. Results of the measurements performed on the prototype DOT imager.

Metrics