Abstract

An optical coherence tomography system is described which can image up to video rate. The system utilizes a high power broadband source and real time image acquisition hardware and features a high speed scanning delay line in the reference arm based on Fourier-transform pulse shaping technology. The theory of low coherence interferometry with a dispersive delay line, and the operation of the delay line are detailed and the design equations of the system are presented. Real time imaging is demonstrated in vivo in tissues relevant to early human disease diagnosis (skin, eye) and in an important model in developmental biology (Xenopus laevis).

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak Jr., "Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues," IEEE J. Sel. Top. Quant. Elect 2, 1017-1028 (1996).
    [CrossRef]
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  4. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, and N. D. Gladkova, "In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa," Opt. Express 2, 432-440 (1997). http://epubs.osa.org/oearchive/source/2788.htm
    [CrossRef]
  5. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151-153 (1992).
    [CrossRef] [PubMed]
  6. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, "Velocity Estimation Accuracy and Frame Rate Limitations in Color Doppler Optical Coherence Tomography," Opt. Lett. 23, 1057-1059 (1998).
    [CrossRef]
  7. C. B. Su, "Achieving Variation of the Optical Path Length by a Few Millimeters at Millisecond Rates for Imaging of Turbid Media and Optical Interferometry: a New Technique," Opt. Lett. 22, 665-667 (1997).
    [CrossRef] [PubMed]
  8. J. Ballif, R. Gianotti, P. Chavanne, R. Walti, and R. P. Salathe, "Rapid and Scalable Scans at 21 m/s in Optical Low-Coherence Reflectometry," Opt. Lett. 22, 757-759 (1997).
    [CrossRef] [PubMed]
  9. V. M. Gelikonov, A. M. Sergeev, G. V. Gelikonov, F. I. Feldchtein, N. D. Gladkova, J. Ioannovich, K. Fragia, and T. Pirza, "Compact Fast-Scanning OCT Device for In Vivo Biotissue Imaging," in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington DC, 1996), pp. 58-59.
  10. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, "Rapid Acquisition of In Vivo Biological Images by Use of Optical Coherence Tomography," Opt. Lett. 21, 1408-1410 (1996).
    [CrossRef] [PubMed]
  11. R. Windecker, M. Fleischer, B. Franze, and H. J. Tiziani, "Two Methods for Fast Coherence Tomography and Topometry," J. Mod. Optics 44, 967-977 (1997).
    [CrossRef]
  12. Z. A. Yasa and N. M. Amer, "A Rapid-Scanning Autocorrelation Scheme for Continuous Monitoring of Picosecond Pulses," Opt. Comm. 36, 406-408 (1981).
    [CrossRef]
  13. H. Harde and H. Burggraf, "Rapid Scanning Autocorrelator for Measurement of Picosecond Laser Pulses," Opt. Comm. 38, 211-215 (1981).
    [CrossRef]
  14. G. Xinan, M. Lambsdorff, J. Kuhl, and W. Biachang, "Fast-Scanning Autocorrelator With1-ns Scanning Range for Characterization of Mode-Locked Ion Lasers," Rev. Sci. Inst. 59, 2088-2090 (1988).
    [CrossRef]
  15. K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, "CW Autocorrelation Measurements of Picosecond Laser Pulses," IEEE J. Quant. Elect. QE-16, 990-996 (1980).
    [CrossRef]
  16. Y. Ishida, T. Yajima, and Y. Tanaka, "Rapid-Scan Autocorrelator for Monitoring CW Mode-Locked Dye Laser Pulses," Jap. J. Appl. Phys. 19, L289-L292 (1980).
    [CrossRef]
  17. M. Yamaguchi and K. Hirabayashi, "Variable Optical Delay Line Based on a Birefringent Planar Optical Platform," Opt. Lett. 20, 644-646 (1995).
    [CrossRef] [PubMed]
  18. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable Femtosecond Pulse Shaping by Use of a Multielement Liquid-Crystal Phase Modulator," Opt. Lett. 15, 326-328 (1990).
    [CrossRef] [PubMed]
  19. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, "400-Hz Mechanical Scanning Optical Delay Line," Opt. Lett. 18, 558-560 (1993).
    [CrossRef] [PubMed]
  20. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High Speed Phase-and Group-Delay Scanning with a Grating-Based Phase Control Delay Line," Opt. Lett. 22, 1811-1813 (1997).
    [CrossRef]
  21. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, "Image Enhancement in Optical Coherence Tomography Using Deconvolution," Elect. Lett. 33, 1365-1367 (1997).
    [CrossRef]
  22. M. R. Hee, M. S. Thesis, Massachusetts Institute of Technology, (1992).
  23. O. E. Martinez, "3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compensation in 1.3-1.6 um Region," IEEE J. Quant. Elect. QE-23, 59-64 (1987).
    [CrossRef]
  24. P. R. Morkel, R. I. Laming, and D. N. Payne, "Noise characteristics of High-Power Doped-Fibre Superluminescent Sources," Elect. Lett. 26, 96-98 (1990).
    [CrossRef]
  25. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, "Transversal and Longitudinal Images from the Retina of the Living Eye Using Low Coherence Reflectometry," J. Biomed. Opt. 3, 12-20 (1998).
    [CrossRef] [PubMed]
  26. Animal experiments were conducted under protocols approved by the Institutional Animal Care and Use committee of the Case Western Reserve University School of Medicine.
  27. S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, "Imaging Developing Neural Morphology Using Optical Coherence Tomography," J. Neurosci. Methods 70, 65-72 (1996).
    [CrossRef] [PubMed]
  28. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "Noninvasive Assessment of the Developing Xenopus Cardiovascular System Using Optical Coherence Tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
    [CrossRef] [PubMed]
  29. S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, "High Resolution Imaging of In Vivo Cardiac Dynamics Using Color Doppler Optical Coherence Tomography," Opt. Express 1, 424-431 (1997). http://epubs.osa.org/oearchive/source/2834.htm
    [CrossRef] [PubMed]

Other (29)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak Jr., "Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues," IEEE J. Sel. Top. Quant. Elect 2, 1017-1028 (1996).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, and N. D. Gladkova, "In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa," Opt. Express 2, 432-440 (1997). http://epubs.osa.org/oearchive/source/2788.htm
[CrossRef]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151-153 (1992).
[CrossRef] [PubMed]

M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, "Velocity Estimation Accuracy and Frame Rate Limitations in Color Doppler Optical Coherence Tomography," Opt. Lett. 23, 1057-1059 (1998).
[CrossRef]

C. B. Su, "Achieving Variation of the Optical Path Length by a Few Millimeters at Millisecond Rates for Imaging of Turbid Media and Optical Interferometry: a New Technique," Opt. Lett. 22, 665-667 (1997).
[CrossRef] [PubMed]

J. Ballif, R. Gianotti, P. Chavanne, R. Walti, and R. P. Salathe, "Rapid and Scalable Scans at 21 m/s in Optical Low-Coherence Reflectometry," Opt. Lett. 22, 757-759 (1997).
[CrossRef] [PubMed]

V. M. Gelikonov, A. M. Sergeev, G. V. Gelikonov, F. I. Feldchtein, N. D. Gladkova, J. Ioannovich, K. Fragia, and T. Pirza, "Compact Fast-Scanning OCT Device for In Vivo Biotissue Imaging," in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington DC, 1996), pp. 58-59.

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, "Rapid Acquisition of In Vivo Biological Images by Use of Optical Coherence Tomography," Opt. Lett. 21, 1408-1410 (1996).
[CrossRef] [PubMed]

R. Windecker, M. Fleischer, B. Franze, and H. J. Tiziani, "Two Methods for Fast Coherence Tomography and Topometry," J. Mod. Optics 44, 967-977 (1997).
[CrossRef]

Z. A. Yasa and N. M. Amer, "A Rapid-Scanning Autocorrelation Scheme for Continuous Monitoring of Picosecond Pulses," Opt. Comm. 36, 406-408 (1981).
[CrossRef]

H. Harde and H. Burggraf, "Rapid Scanning Autocorrelator for Measurement of Picosecond Laser Pulses," Opt. Comm. 38, 211-215 (1981).
[CrossRef]

G. Xinan, M. Lambsdorff, J. Kuhl, and W. Biachang, "Fast-Scanning Autocorrelator With1-ns Scanning Range for Characterization of Mode-Locked Ion Lasers," Rev. Sci. Inst. 59, 2088-2090 (1988).
[CrossRef]

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, "CW Autocorrelation Measurements of Picosecond Laser Pulses," IEEE J. Quant. Elect. QE-16, 990-996 (1980).
[CrossRef]

Y. Ishida, T. Yajima, and Y. Tanaka, "Rapid-Scan Autocorrelator for Monitoring CW Mode-Locked Dye Laser Pulses," Jap. J. Appl. Phys. 19, L289-L292 (1980).
[CrossRef]

M. Yamaguchi and K. Hirabayashi, "Variable Optical Delay Line Based on a Birefringent Planar Optical Platform," Opt. Lett. 20, 644-646 (1995).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable Femtosecond Pulse Shaping by Use of a Multielement Liquid-Crystal Phase Modulator," Opt. Lett. 15, 326-328 (1990).
[CrossRef] [PubMed]

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, "400-Hz Mechanical Scanning Optical Delay Line," Opt. Lett. 18, 558-560 (1993).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High Speed Phase-and Group-Delay Scanning with a Grating-Based Phase Control Delay Line," Opt. Lett. 22, 1811-1813 (1997).
[CrossRef]

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, "Image Enhancement in Optical Coherence Tomography Using Deconvolution," Elect. Lett. 33, 1365-1367 (1997).
[CrossRef]

M. R. Hee, M. S. Thesis, Massachusetts Institute of Technology, (1992).

O. E. Martinez, "3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compensation in 1.3-1.6 um Region," IEEE J. Quant. Elect. QE-23, 59-64 (1987).
[CrossRef]

P. R. Morkel, R. I. Laming, and D. N. Payne, "Noise characteristics of High-Power Doped-Fibre Superluminescent Sources," Elect. Lett. 26, 96-98 (1990).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, "Transversal and Longitudinal Images from the Retina of the Living Eye Using Low Coherence Reflectometry," J. Biomed. Opt. 3, 12-20 (1998).
[CrossRef] [PubMed]

Animal experiments were conducted under protocols approved by the Institutional Animal Care and Use committee of the Case Western Reserve University School of Medicine.

S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, "Imaging Developing Neural Morphology Using Optical Coherence Tomography," J. Neurosci. Methods 70, 65-72 (1996).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "Noninvasive Assessment of the Developing Xenopus Cardiovascular System Using Optical Coherence Tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, "High Resolution Imaging of In Vivo Cardiac Dynamics Using Color Doppler Optical Coherence Tomography," Opt. Express 1, 424-431 (1997). http://epubs.osa.org/oearchive/source/2834.htm
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: MOV (776 KB)     
» Media 2: MOV (136 KB)     
» Media 3: MOV (304 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the Fourier domain optical delay line (view from above). The incident, collimated broadband light is diffracted from the grating and spectrally dispersed. The lens collimates the dispersed spectrum while focusing it to a line on the scanning mirror. The scanning mirror imposes a linear phase ramp on the spectrum and redirects the light back through the lens, which re-collimates the beam and reconverges the spectrum onto the grating. The beam then diffracts in a reverse manner from the grating and propagates towards the double-pass mirror collinear with the incident beam collimated and undispersed. The double-pass mirror returns the light back through an identical path.

Fig. 2.
Fig. 2.

Schematic of the high speed OCT system. The broken red lines represent optical paths and the solid black lines represent electronic paths.

Fig. 3.
Fig. 3.

Recordings (776 KB) of beating Xenopus embryo heart. Images were acquired at 8, 16, and 32 frames per second and recorded directly to SVHS video tape, then clips were recorded to digital format at 30 frames per second. Images are 3 mm horizontally (h) by 2 mm vertically (v). Probe light was incident from the left, i.e. the depth direction is horizontal. Notice the increasing temporal resolution and the decreasing lateral (vertical) image resolution as the frame rate increases. File size was minimized to reduce download time. For optimal viewing, set player to loop mode.

Fig. 4.
Fig. 4.

Recording (137 KB) of human thick skin (fingertip) in vivo with glycerin index matching. The circle indicates sweat ducts which the image slice follows from the epidermis through the stratum corneum to the surface. The images were recorded at 16 frames per second to SVHS video tape, then recorded to digital format at 15 frames per second. Images are 3 mm (h) by 4 mm (v), and 250 pixels (h) by 250 pixels (v). Probe light was incident from the left, i.e. the depth direction is horizontal. File size was minimized to reduce download time. For optimal viewing, set player to loop mode.

Fig. 5.
Fig. 5.

Recording (304 KB) of anterior segment of murine eye. The animal was live, unanesthetized, and held by hand. The image plane moves in the direction normal to the image from one side of the pupil to the other and back. The images were recorded at 16 frames per second to SVHS video tape, then recorded to digital format at 30 frames per second. Images are 3 mm (h) by 4 mm (v), and 250 pixels (h) by 250 pixels (v). Probe light was incident from the left, i.e. the depth direction is horizontal. File size was minimized to reduce download time. For optimal viewing, set player to loop mode.

Tables (1)

Tables Icon

Table 1. The tradeoff between frame rate and dynamic range for systems imaging 250 lines (A-scans) per frame by varying the scan rate of the delay line. For this calculation, the center wavelength is 1300 nm and the power incident on the sample is 4 mW.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

SNR = ρ P s R s 2 eB ,
i ˜ d ( Δ l ) = ρ · R ˜ is ( Δ l ) .
R ˜ is ( Δ l g , Δ l ϕ ) = R is ( Δ l g ) · e j k 0 Δ l ϕ .
R is ( Δ l g ) = R ii ( Δ l g ) r s ( Δ l g ) .
R ˜ ii ( Δ l g , Δ l ϕ ) = R ii ( Δ l g ) · e j k 0 Δ l ϕ .
f 0 = V ϕ k 0 2 π = ν 0 V ϕ c = V ϕ λ 0 .
f = ν V g c = ( 1 λ 1 λ 0 ) V g ,
Δ f = Δ ν V g c = Δλ V g λ 0 2 .
SNR = ρ P s R s λ 0 2 4 e Δ λ V g ,
x ( t t 0 ) X ( ω ) e j ω t 0 .
ϕ ( λ ) = 8 πσ x λ + 8 πσ l f ( λ λ 0 ) ,
ϕ ( ω ) = 4 σ x ω c 8 πσ l f ( ω ω 0 ) p ω ,
t ϕ = 4 σ x c .
Δ l ϕ = 4 σx .
t g = 4 σ x c 4 σ l f λ 0 cp ,
Δ l g = 4 σ x 4 σ l f λ 0 p .
f 0 = 4 x λ 0 σ ( t ) t .
Δ f = 2 Δλ λ 0 2 ( 2 x 2 l f λ 0 p ) σ ( t ) t .
f 0 ( t ) = 4 x λ 0 b 2 π f m cos ( 2 π f m t ) .
Δ f ( t ) = 2 Δλ λ 0 2 ( 2 x 2 l f λ 0 p ) b 2 π f m cos ( 2 π f m t ) .

Metrics