Abstract

Diffuse optical reflection tomography is used to reconstruct absorption images from continuous-wave measurements of diffuse light re-emitted from a “semi-infinite” medium. The imaging algorithm is simple and fast and permits psuedo-3D images to be reconstructed from measurements made with a single source of light. Truly quantitative three-dimensional images will require modifications to the algorithm, such as incorporating measurements from multiple sources.

© 1998 Optical Society of America

Full Article  |  PDF Article
Related Articles
Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements

Steen J. Madsen, Brian C. Wilson, Michael S. Patterson, Young D. Park, Steven L. Jacques, and Yaron Hefetz
Appl. Opt. 31(18) 3509-3517 (1992)

Investigation of two-layered turbid media with time-resolved reflectance

Alwin Kienle, Thomas Glanzmann, Georges Wagnières, and Hubert van den Bergh
Appl. Opt. 37(28) 6852-6862 (1998)

Performance of fitting procedures in curved geometry for retrieval of the optical properties of tissue from time-resolved measurements

Angelo Sassaroli, Fabrizio Martelli, Giovanni Zaccanti, and Yukio Yamada
Appl. Opt. 40(1) 185-197 (2001)

References

  • View by:
  • |
  • |
  • |

  1. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48:34–40 (1995).
    [Crossref]
  2. S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42:841–854 (1997).
    [Crossref]
  3. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20:426–428 (1995).
    [Crossref]
  4. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13:253–266 (1996).
    [Crossref]
  5. M. V. Klibanov, T. R. Lucas, and R. M. Frank, “A fast and accurate imaging algorithm in optical /diffusion tomography,” Inverse Probl. 13:1341–1361 (1997).
    [Crossref]
  6. S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” SPIE Proceedings IS11:35–64 (1993).
  7. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  8. D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1:404–413 (1997).
    [Crossref]
  9. X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22:573–575 (1997).
    [Crossref]
  10. X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse photon density waves: errata,” Opt. Lett. 22:1198 (1997).
    [Crossref]
  11. C. L. Matson, N. Clark, l. McMackin, and J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36:214–220 (1997).
    [Crossref]
  12. C. L. Matson, “A diffraction tomographic model of the forward problem using diffuse photon density waves,” Opt. Express 1:6–11 (1997).
    [Crossref]
  13. D. Boas, Diffuse Photon Probes of Structural and Dynamical Properties of Turbid Media: Theory and Biomedical Applications, A Ph.D. Dissertation in Physics, University of Pennsylvania, 1996.
  14. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91:4887–4891 (1994).
    [Crossref]
  15. P. N. den Outer, T. M. Nieuwenhuizen, and A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10:1209–1218 (1993).
    [Crossref]
  16. S. Feng, F. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34:3826–3837 (1995).
    [Crossref]
  17. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11:2727–2741 (1994).
    [Crossref]
  18. T. J. Farrell, M. S. Patterson, and B. Wilson, ”A diffusion theory model of spatially resolved, steady state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Medical Physics 19:879–888 (1992).
    [Crossref]

1997 (7)

S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42:841–854 (1997).
[Crossref]

D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1:404–413 (1997).
[Crossref]

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22:573–575 (1997).
[Crossref]

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse photon density waves: errata,” Opt. Lett. 22:1198 (1997).
[Crossref]

C. L. Matson, N. Clark, l. McMackin, and J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36:214–220 (1997).
[Crossref]

C. L. Matson, “A diffraction tomographic model of the forward problem using diffuse photon density waves,” Opt. Express 1:6–11 (1997).
[Crossref]

M. V. Klibanov, T. R. Lucas, and R. M. Frank, “A fast and accurate imaging algorithm in optical /diffusion tomography,” Inverse Probl. 13:1341–1361 (1997).
[Crossref]

1996 (1)

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13:253–266 (1996).
[Crossref]

1995 (3)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48:34–40 (1995).
[Crossref]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20:426–428 (1995).
[Crossref]

S. Feng, F. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34:3826–3837 (1995).
[Crossref]

1994 (2)

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11:2727–2741 (1994).
[Crossref]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91:4887–4891 (1994).
[Crossref]

1993 (2)

P. N. den Outer, T. M. Nieuwenhuizen, and A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10:1209–1218 (1993).
[Crossref]

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” SPIE Proceedings IS11:35–64 (1993).

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, ”A diffusion theory model of spatially resolved, steady state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Medical Physics 19:879–888 (1992).
[Crossref]

Arridge, S. R.

S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42:841–854 (1997).
[Crossref]

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” SPIE Proceedings IS11:35–64 (1993).

Boas, D.

D. Boas, Diffuse Photon Probes of Structural and Dynamical Properties of Turbid Media: Theory and Biomedical Applications, A Ph.D. Dissertation in Physics, University of Pennsylvania, 1996.

Boas, D. A.

D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1:404–413 (1997).
[Crossref]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20:426–428 (1995).
[Crossref]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91:4887–4891 (1994).
[Crossref]

Chance, B.

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22:573–575 (1997).
[Crossref]

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse photon density waves: errata,” Opt. Lett. 22:1198 (1997).
[Crossref]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20:426–428 (1995).
[Crossref]

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48:34–40 (1995).
[Crossref]

S. Feng, F. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34:3826–3837 (1995).
[Crossref]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91:4887–4891 (1994).
[Crossref]

Clark, N.

C. L. Matson, N. Clark, l. McMackin, and J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36:214–220 (1997).
[Crossref]

den Outer, P. N.

P. N. den Outer, T. M. Nieuwenhuizen, and A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10:1209–1218 (1993).
[Crossref]

Durduran, T.

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse photon density waves: errata,” Opt. Lett. 22:1198 (1997).
[Crossref]

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22:573–575 (1997).
[Crossref]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, ”A diffusion theory model of spatially resolved, steady state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Medical Physics 19:879–888 (1992).
[Crossref]

Fender, J. S.

C. L. Matson, N. Clark, l. McMackin, and J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36:214–220 (1997).
[Crossref]

Feng, S.

S. Feng, F. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34:3826–3837 (1995).
[Crossref]

Feng, T.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11:2727–2741 (1994).
[Crossref]

Frank, R. M.

M. V. Klibanov, T. R. Lucas, and R. M. Frank, “A fast and accurate imaging algorithm in optical /diffusion tomography,” Inverse Probl. 13:1341–1361 (1997).
[Crossref]

Haskell, R. C.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11:2727–2741 (1994).
[Crossref]

Hebden, J. C.

S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42:841–854 (1997).
[Crossref]

Jiang, H.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13:253–266 (1996).
[Crossref]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

Klibanov, M. V.

M. V. Klibanov, T. R. Lucas, and R. M. Frank, “A fast and accurate imaging algorithm in optical /diffusion tomography,” Inverse Probl. 13:1341–1361 (1997).
[Crossref]

Lagendijk, A.

P. N. den Outer, T. M. Nieuwenhuizen, and A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10:1209–1218 (1993).
[Crossref]

Li, X. D.

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse photon density waves: errata,” Opt. Lett. 22:1198 (1997).
[Crossref]

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22:573–575 (1997).
[Crossref]

Lucas, T. R.

M. V. Klibanov, T. R. Lucas, and R. M. Frank, “A fast and accurate imaging algorithm in optical /diffusion tomography,” Inverse Probl. 13:1341–1361 (1997).
[Crossref]

Matson, C. L.

C. L. Matson, N. Clark, l. McMackin, and J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36:214–220 (1997).
[Crossref]

C. L. Matson, “A diffraction tomographic model of the forward problem using diffuse photon density waves,” Opt. Express 1:6–11 (1997).
[Crossref]

McAdams, M. S.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11:2727–2741 (1994).
[Crossref]

McMackin, l.

C. L. Matson, N. Clark, l. McMackin, and J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36:214–220 (1997).
[Crossref]

Nieuwenhuizen, T. M.

P. N. den Outer, T. M. Nieuwenhuizen, and A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10:1209–1218 (1993).
[Crossref]

O’Leary, M. A.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20:426–428 (1995).
[Crossref]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91:4887–4891 (1994).
[Crossref]

Osterberg, U. L.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13:253–266 (1996).
[Crossref]

Pattanayak, D. N.

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse photon density waves: errata,” Opt. Lett. 22:1198 (1997).
[Crossref]

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22:573–575 (1997).
[Crossref]

Patterson, M. S.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13:253–266 (1996).
[Crossref]

T. J. Farrell, M. S. Patterson, and B. Wilson, ”A diffusion theory model of spatially resolved, steady state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Medical Physics 19:879–888 (1992).
[Crossref]

Paulsen, K. D.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13:253–266 (1996).
[Crossref]

Pogue, B. W.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13:253–266 (1996).
[Crossref]

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

Svaasand, L. O.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11:2727–2741 (1994).
[Crossref]

Tromberg, B. J.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11:2727–2741 (1994).
[Crossref]

Tsay, T.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11:2727–2741 (1994).
[Crossref]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, ”A diffusion theory model of spatially resolved, steady state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Medical Physics 19:879–888 (1992).
[Crossref]

Yodh, A.

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48:34–40 (1995).
[Crossref]

Yodh, A. G.

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse photon density waves: errata,” Opt. Lett. 22:1198 (1997).
[Crossref]

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22:573–575 (1997).
[Crossref]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20:426–428 (1995).
[Crossref]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91:4887–4891 (1994).
[Crossref]

Zeng, F.

S. Feng, F. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34:3826–3837 (1995).
[Crossref]

Appl. Opt. (2)

C. L. Matson, N. Clark, l. McMackin, and J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36:214–220 (1997).
[Crossref]

S. Feng, F. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34:3826–3837 (1995).
[Crossref]

Inverse Probl. (1)

M. V. Klibanov, T. R. Lucas, and R. M. Frank, “A fast and accurate imaging algorithm in optical /diffusion tomography,” Inverse Probl. 13:1341–1361 (1997).
[Crossref]

J. Opt. Soc. Am. A (2)

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: Simulations and experiments,” J. Opt. Soc. Am. A 13:253–266 (1996).
[Crossref]

P. N. den Outer, T. M. Nieuwenhuizen, and A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10:1209–1218 (1993).
[Crossref]

J.Opt.Soc.of Am.A (1)

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J.Opt.Soc.of Am.A 11:2727–2741 (1994).
[Crossref]

Medical Physics (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, ”A diffusion theory model of spatially resolved, steady state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Medical Physics 19:879–888 (1992).
[Crossref]

Opt. Express (2)

C. L. Matson, “A diffraction tomographic model of the forward problem using diffuse photon density waves,” Opt. Express 1:6–11 (1997).
[Crossref]

D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1:404–413 (1997).
[Crossref]

Opt. Lett. (3)

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22:573–575 (1997).
[Crossref]

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse photon density waves: errata,” Opt. Lett. 22:1198 (1997).
[Crossref]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20:426–428 (1995).
[Crossref]

Phys. Med. Biol. (1)

S. R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42:841–854 (1997).
[Crossref]

Phys. Today (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48:34–40 (1995).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneties within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91:4887–4891 (1994).
[Crossref]

SPIE Proceedings (1)

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” SPIE Proceedings IS11:35–64 (1993).

Other (2)

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

D. Boas, Diffuse Photon Probes of Structural and Dynamical Properties of Turbid Media: Theory and Biomedical Applications, A Ph.D. Dissertation in Physics, University of Pennsylvania, 1996.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of the set-up for diffuse optical reflectance tomography. The phantom is 30 × 30 × 20 cm with μs ′ = 10.0 cm-1 and μa = 0.05 cm-1. The properties of the objects are given in the text.

Fig. 2
Fig. 2

Difference of the images obtained by the CCD camera without and with the absorbing objects. The absorbing objects cause the measured diffuse reflectance to decrease. The color scale is linear where red corresponds to maximum change and blue corresponds to zero change. The peak attenuation for the first (second) object corresponds to a 24% (8%) change in the signal.

Fig.3.
Fig.3.

Images reconstruction at different depths from the raw data presented in fig. 2. The objects can be localized in depth by minimizing the size of the object in the X and Y directions. The color scale is linear. Reconstruct absorption coefficients are given in the text.

Fig. 4.
Fig. 4.

Measured reflectance versus radial position from the source. Experimental data with the absorbing objects present given by symbols. Theoretical fit for a semi-infinite homogeneous medium is given by the solid line. The object is to the left resulting in the difference between theory and experiment.

Fig. 5. A)
Fig. 5. A)

Reconstruction of the upper left object by subtracting a theoretical background from the experimental data. B) Reconstruction of the lower center object by subtracting the theoretical background from the experimental data.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ sc ( r d ) = dr ϕ inc r s r νδ μ a ( r ) D G r r d .
ϕ ˜ sc ω x ω y = G ˜ ω x ω y z A ω x ω y z dz ,
A ω x ω y z = ∫∫ d x d y ϕ inc r s x y z νδ μ a x y z D exp ( x x + y y )
G r r d = exp k ( ( x x d ) 2 + ( y y d ) 2 + z 2 ) 1 / 2 4 πD ( ( x x d ) 2 + ( y y d ) 2 + z 2 ) 1 / 2
exp [ k ( ( x x d ) 2 + ( y y d ) 2 + ( z + 2 z e ) 2 ) 1 / 2 ] 4 πD ( ( x x d ) 2 + ( y y d ) 2 + ( z + 2 z e ) 2 ) 1 / 2
z e = 2 3 μ s ' 1 + R eff 1 R eff
G ˜ ω x ω y = 1 2 D ω x 2 + ω y 2 + k 2
{ exp ( z ω x 2 + ω y 2 + k 2 ) exp [ ( z + z e ) ω x 2 + ω y 2 + k 2 ] } .
δμ a x y z = D vhϕ inc x y z FT 1 [ ϕ ˜ sc ω x ω y z G ˜ ω x ω y z ]

Metrics