Abstract

Chromatic dispersion profile of dual-concentric-core photonic crystal fibers is optimized for broadband dispersion compensation of single mode fibers (SMFs) by using genetic algorithm incorporated with full-vector finite-element method. From the numerical results presented here, it is found that by increasing the distance between central core and outer ring core, larger negative dispersion coefficient and better dispersion slope compensation are possible. There is a tradeoff between the magnitude of negative dispersion coefficient and dispersion slope compensation due to the concave dispersion profile of dual-concentric-core photonic crystal fibers. In spite of the tradeoff, dual-concentric-core photonic crystal fibers having larger negative dispersion coefficient as well as compensating for dispersion slope of SMFs in the entire C band with large effective area can be designed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photonics Technol. Lett. 8, 1510-1512 (1996).
    [CrossRef]
  2. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm•km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
    [CrossRef]
  3. B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, M. Banham, M.W. Mason, D.F. Murphy, E.A.M. Brown, H. Sabert, T.A. Birks, J.C. Knight, and P.St.J. Russel, "Slope-matched dispersion-compensating photonic crystal fibre," in Proceedings of Conference on Lasers and Electro-Optics (CLEO 2004), paper CPDD3, San Francisco, CA, (2004).
  4. Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photonics Technol. Lett. 16, 1516-1518 (2004).
    [CrossRef]
  5. F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2005).
    [CrossRef]
  6. A. Huttunen and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express 13, 627-635 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627</a>.
    [CrossRef] [PubMed]
  7. B.P. Pal and K. Pande, "Optimization of a dual-core dispersion slope compensating fiber for DWDM transmission in the 1480-1610 nm band through G.652 single-mode fibers," Opt. Commun. 201, 335-344 (2002).
    [CrossRef]
  8. F. Gérôme, J.-L. Auguste, S. Février, J. Maury, J.-M. Blondy, L. Gasca, and L. Provost, "Dual concentric core dispersion compensating fiber optimized for WDM application," Electron. Lett. 41, 116-117 (2005).
    [CrossRef]
  9. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, "Photonic crystal fiber design by means of a genetic algorithm," Opt. Express 12, 1990-1995 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1990">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1990</a>.
    [CrossRef] [PubMed]
  10. F. Poletti, V. Finazzi, T.M. Monro, N.G.R. Broderick, V. Tse, and D.J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express 13, 3728-3736 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728</a>.
    [CrossRef] [PubMed]
  11. T. Fujisawa and M. Koshiba, "Finite element characterization of chromatic dispersion in nonlinear holey fibers," Opt. Express 11, 1481-1489 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1481">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1481</a>.
    [CrossRef] [PubMed]
  12. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  13. G.P. Agrawal, Nonlinear fiber optics, Academic press (1995).
  14. A. Belahlou, S. Bickham, D. Chowdhury, P.D.A. Evans, J.M. Grochocinski, P. Han, A. Kobyakov, S. Kumar, G. Lutter, J.C. Mauro, Y. Mauro, M. Mlejnek, M.S.K. Muktoyuk, M.T. Murtagh, S. Raghavan, V.R.A. Sevian, N.Taylor, S. Tsuda, M. Vasilyev, and L. Wang, "Fiber design considerations for 40 Gb/s systems," J. Lightwave Technol. 20, 2290-2305 (2002).
    [CrossRef]
  15. G. Renversez, F. Bordas, and B.T. Kuhlmey, "Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size," Opt. Lett. 30, 1264-1266 (2005).
    [CrossRef] [PubMed]
  16. K. Saitoh, Y. Tsuchida, M. Koshiba, and N.A. Mortensen, "Endlessly single-mode holey fibers: the influence of core design," Opt. Express 13, 10833-10839 (2005), <a href= "http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10833">http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10833</a>.
    [CrossRef] [PubMed]
  17. Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Express 13, 4770-4779 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4770">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4770</a>.
    [CrossRef] [PubMed]

CLEO 2004

B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, M. Banham, M.W. Mason, D.F. Murphy, E.A.M. Brown, H. Sabert, T.A. Birks, J.C. Knight, and P.St.J. Russel, "Slope-matched dispersion-compensating photonic crystal fibre," in Proceedings of Conference on Lasers and Electro-Optics (CLEO 2004), paper CPDD3, San Francisco, CA, (2004).

Electron. Lett.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm•km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000).
[CrossRef]

F. Gérôme, J.-L. Auguste, S. Février, J. Maury, J.-M. Blondy, L. Gasca, and L. Provost, "Dual concentric core dispersion compensating fiber optimized for WDM application," Electron. Lett. 41, 116-117 (2005).
[CrossRef]

IEEE J. Quantum Electron.

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE Photonics Technol. Lett.

K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photonics Technol. Lett. 8, 1510-1512 (1996).
[CrossRef]

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photonics Technol. Lett. 16, 1516-1518 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

B.P. Pal and K. Pande, "Optimization of a dual-core dispersion slope compensating fiber for DWDM transmission in the 1480-1610 nm band through G.652 single-mode fibers," Opt. Commun. 201, 335-344 (2002).
[CrossRef]

Opt. Express

T. Fujisawa and M. Koshiba, "Finite element characterization of chromatic dispersion in nonlinear holey fibers," Opt. Express 11, 1481-1489 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1481">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1481</a>.
[CrossRef] [PubMed]

E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, "Photonic crystal fiber design by means of a genetic algorithm," Opt. Express 12, 1990-1995 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1990">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1990</a>.
[CrossRef] [PubMed]

A. Huttunen and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express 13, 627-635 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627</a>.
[CrossRef] [PubMed]

F. Poletti, V. Finazzi, T.M. Monro, N.G.R. Broderick, V. Tse, and D.J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express 13, 3728-3736 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728</a>.
[CrossRef] [PubMed]

Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Express 13, 4770-4779 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4770">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4770</a>.
[CrossRef] [PubMed]

K. Saitoh, Y. Tsuchida, M. Koshiba, and N.A. Mortensen, "Endlessly single-mode holey fibers: the influence of core design," Opt. Express 13, 10833-10839 (2005), <a href= "http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10833">http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10833</a>.
[CrossRef] [PubMed]

Opt. Lett.

Other

G.P. Agrawal, Nonlinear fiber optics, Academic press (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross sections of (a) type 1, (b) type2, and (c) type 3 dual-concentric-core photonic crystal fibers.

Fig. 2.
Fig. 2.

Dispersion curves of type 1 DCPCF with Λ = 2.5 μm, d/Λ = 0.65, dr /Λ = 0.22 (solid curve), type 2 DCPCF with Λ = 1.8 μm, d/Λ = 0.45, dr /Λ = 0.25 (dashed curve), and type 3 DCPCF with Λ = 1.6 μm, d/Λ = 0.4, dr /Λ = 0.25 (dash-dot curve).

Fig. 3.
Fig. 3.

(a) Optimized chromatic dispersions of type 1 DCPCF for different values of X and (b) corresponding residual dispersion after compensating for 80-km SMF.

Fig. 4.
Fig. 4.

(a) Optimized chromatic dispersions of type 2 DCPCF for different values of X and (b) corresponding residual dispersion after compensating for 80-km SMF.

Fig. 5.
Fig. 5.

(a) Optimized chromatic dispersions of type 3 DCPCF for different values of X and (b) corresponding residual dispersion after compensating for 80-km SMF.

Fig. 6.
Fig. 6.

(a) Confinement losses of the optimized DCPCF as a function of the number of the rings. (b) Bending losses of the optimized DCPCF as a function of bending radius.

Tables (4)

Tables Icon

Table 1. Searching areas for each parameter in GA analysis.

Tables Icon

Table 2. Optimized structural parameters for type 1 DCPCF and values of DDCPCF and Aeff 1.55 μm.

Tables Icon

Table 3. Optimized structural parameters for type 2 DCPCF and values of DDCPCF and Aegat 1.55 μm.

Tables Icon

Table 4. Optimized structural parameters for type 3 DCPCF and values of DDCPCF and Aegat 1.55 μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F ( Λ , d / Λ , d r / Λ ) = exp ( w 1 f 1 ) + f 2
f 1 = λ = 1.53 μ m 1.565 μ m D t arg et ( λ ) + D DCPCF ( λ )
f 2 = { 0.9 exp ( w 1 f 1 ) if A eff @ 1.55 μ m < 20 μ m 2 0 else
D t arg et ( λ ) = X × D SMF ( λ )

Metrics