Abstract

Single frequency lasing from organic dye solutions on a monolithic poly(dimethylsiloxane) (PDMS) elastomer chip is demonstrated. The laser cavity consists of a single mode liquid core/PDMS cladding channel waveguide and a phase shifted 15th order distributed feedback (DFB) structure. A 1mM solution of Rhodamine 6G in a methanol and ethylene glycol mixture was used as the gain medium. Using 6 nanosecond 532nm Nd:YAG laser pulses as the pump light, we achieved threshold pump fluence of ~0.8mJ/cm2 and single-mode operation at pump levels up to ten times the threshold. This microfabricated dye laser provides a compact and inexpensive coherent light source for microfluidics and integrated optics covering from near UV to near IR spectral region.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
    [CrossRef]
  2. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Witesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
    [CrossRef] [PubMed]
  3. J. C. Galas, J. Torres, M. Belotti, and Q. Kou, "Microfluidic tunable dye laser with integrated mixer and ring resonator," App. Phys. Lett. 86, 264101 (2005).
    [CrossRef]
  4. S. Baslslev and A. Kristensen, "Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments," Opt. Express 13, 344-351 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-344">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-344</a>
    [CrossRef]
  5. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (Wiley-Interscience, New York, 1995).
  6. J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
    [CrossRef] [PubMed]
  7. S. R. Quake and A. Scherer, "From micro- to nanofabrication with soft materials," Science 290, 1536-1540 (2000).
    [CrossRef] [PubMed]
  8. Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
    [CrossRef]
  9. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
    [CrossRef]
  10. A. Yariv, Optical electronics in modern communications (Oxford, New York, 1997).
  11. L. A. Wellerbrophy and D. G. Hall, "Analysis of wave-guide gratings-application of Rouard's method," J. Opt. Soc. Am. A 2, 863-871 (1985).
    [CrossRef]
  12. S. C. De Rosa, L. A. Herzenberg, and M. Roederer, "11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity," Nat. Med. 7, 245-248 (2001).
    [CrossRef] [PubMed]
  13. W. Streifer, D. R Scifres, and R. D. Burnham, "Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers," IEEE J. Quantum Electron. 11, 867-873 (1975).
    [CrossRef]

Acc. Chem. Res.

J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci.

Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

App. Phys. Lett.

J. C. Galas, J. Torres, M. Belotti, and Q. Kou, "Microfluidic tunable dye laser with integrated mixer and ring resonator," App. Phys. Lett. 86, 264101 (2005).
[CrossRef]

IEEE J. Quantum Electron.

W. Streifer, D. R Scifres, and R. D. Burnham, "Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers," IEEE J. Quantum Electron. 11, 867-873 (1975).
[CrossRef]

J. Am. Chem. Soc.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Witesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005).
[CrossRef] [PubMed]

J. Micromech. Microeng.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

J. Opt. Soc. Am. A

L. A. Wellerbrophy and D. G. Hall, "Analysis of wave-guide gratings-application of Rouard's method," J. Opt. Soc. Am. A 2, 863-871 (1985).
[CrossRef]

Nat. Med.

S. C. De Rosa, L. A. Herzenberg, and M. Roederer, "11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity," Nat. Med. 7, 245-248 (2001).
[CrossRef] [PubMed]

Opt. Express

S. Baslslev and A. Kristensen, "Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments," Opt. Express 13, 344-351 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-344">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-344</a>
[CrossRef]

Science

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

S. R. Quake and A. Scherer, "From micro- to nanofabrication with soft materials," Science 290, 1536-1540 (2000).
[CrossRef] [PubMed]

Other

A. Yariv, Optical electronics in modern communications (Oxford, New York, 1997).

L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (Wiley-Interscience, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of a monolithic optofluidic DFB dye laser chip.

Fig. 2.
Fig. 2.

Optical micrograph of a microfluidic channel with an embedded phase shifted 15th order DFB structure on a PDMS chip. The grating period is 3μm. The channel width is 5μm. The central larger PDMS post introduces a 15π phase shift. The upper left inset shows the picture of a actual optofluidic dye laser chip.

Fig. 3.
Fig. 3.

Simulated reflectivity spectrum of a 15π phase shifted 15th order DFB structure. The curve spanning from 550nm to 650nm is the gain spectrum of Rhodamine 6G. The inset shows the enlarged plot the 15th resonance at 563nm.

Fig. 4.
Fig. 4.

Optofluidic DFB dye laser spectrum. The measured linewidth is 0.21nm. The inset B shows the output energy vs. the absorbed pump energy curve. The threshold pump fluence is ~ 0.8mJ/cm2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ m = 2 n eff Λ
FSR = λ m m 1 , ( or Δ ν = c 2 n eff Λ )

Metrics