Abstract

We describe the design and characterization of solid core large mode area bandgap fibers exhibiting low propagation loss and low bend loss. The fibers have been prepared by modified chemical vapor deposition process. The bandgap guidance obtained thanks to a 3-bilayer periodic cladding is assisted by a very slight index step (5.10-4) in the solid core. The propagation loss reaches a few dB/km and is found to be close to material loss.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. P. Hansen, J. Broeng, P. M. W. Skovgaard, J. R. Folkenberg, M. D. Nielsen, A. Petersson, T. P. Hansen, C. Jakobsen, H. R. Simonsen, J. Limpert, F. Salin, "High-power photonic crystal fiber lasers: Design, handling and subassemblies," presented at Photonics West, San Jose, CA, (2005)
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996)
    [CrossRef] [PubMed]
  3. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004).
    [CrossRef] [PubMed]
  4. W. S. Wong, W. Peng, J. M. McLaughlin, L. Dong, "Robust single-mode propagation in optical fibers with record effective areas," presented at CLEO US, post deadline paper CPDB10, (2005)
  5. S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, G. Monnom, "Very large effective area singlemode photonic bandgap fiber," Electron. Lett. 39, 1240-1242 (2003)
    [CrossRef]
  6. A. Argyros, T. A Birks, S. G. Leon-Saval, C.M. B. Cordeiro, F. Luan, P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005),
    [CrossRef] [PubMed]
  7. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452 - 8459 (2005).
    [CrossRef] [PubMed]
  8. Jeunhomme, L.B., "Attenuation" in Single-mode fiber optics, eds. (Dekker, New York, 1990), pp. 96-101
  9. M.A. Duguay, Y.Kokubun, T.L. Koch, L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
    [CrossRef]
  10. Litchinitser, S. C.Dunn, B. Usner, B.J. Eggleton, T.P. White, R. C. McPhedran, C. Martjin de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
    [CrossRef] [PubMed]
  11. J. Marcou, S. Février, "Comments on "On the analysis of a weakly guiding doubly clad dielectric optical fiber with an annular core," Microwave Opt. Technol. Lett. 38, 248-254 (2003).
    [CrossRef]
  12. S.G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T.D. Engeness, M. Soljacic, S.A. Jacobs, J.D. Joannopoulos, Y. Fink, "Low-loss asymptotically single-mode propagation in large-core Omniguide fibers," Opt. Express 9, 748-779 (2001)
    [CrossRef] [PubMed]
  13. S. Février, P. Roy, D. Pagnoux, J.-L. Auguste, J.-M. Blondy, J. Marcou, "12nm FWHM 20dB stop-band filter based on cascaded dual concentric core fiber filters," Electron. Lett. 37, 1113-1114 (2001)
    [CrossRef]
  14. S. Février, J.-L. Auguste, J.-M. Blondy, J. Marcou, A. Peyrilloux, P. Roy, D. Pagnoux, "Accurate tuning of the highly-negative-chromatic-dispersion wavelength into a dual concentric core fibre by macro-bending," presented at 28th European Conference on Optical Communication, Copenhagen, Denmark, 8-12 september 2002
  15. G. Humbert, F. Benabid, J. C. Knight, P. St. J. Russell, "Nonlinear effects due to interface modes in a hollow core photonic crystal fiber," presented at CLEO US, paper CMD5 (2005 )
  16. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, A. N. Guryanov, "Low Loss Large Mode Area Bragg Fibre," presented at 31th European Conference on Optical Communication, Post deadline paper Th4.4.3, Glasgow, United-Kingdom, 25-29 september 2005
  17. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004),
    [CrossRef] [PubMed]

-mode fiber optics (1)

Jeunhomme, L.B., "Attenuation" in Single-mode fiber optics, eds. (Dekker, New York, 1990), pp. 96-101

Appl. Phys. Lett. (1)

M.A. Duguay, Y.Kokubun, T.L. Koch, L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

CLEO 2005 (1)

G. Humbert, F. Benabid, J. C. Knight, P. St. J. Russell, "Nonlinear effects due to interface modes in a hollow core photonic crystal fiber," presented at CLEO US, paper CMD5 (2005 )

CLEO 2005 postdeadline paper (1)

W. S. Wong, W. Peng, J. M. McLaughlin, L. Dong, "Robust single-mode propagation in optical fibers with record effective areas," presented at CLEO US, post deadline paper CPDB10, (2005)

ECOC 2005 postdeadline paper (1)

S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, A. N. Guryanov, "Low Loss Large Mode Area Bragg Fibre," presented at 31th European Conference on Optical Communication, Post deadline paper Th4.4.3, Glasgow, United-Kingdom, 25-29 september 2005

Electron. Lett. (2)

S. Février, P. Roy, D. Pagnoux, J.-L. Auguste, J.-M. Blondy, J. Marcou, "12nm FWHM 20dB stop-band filter based on cascaded dual concentric core fiber filters," Electron. Lett. 37, 1113-1114 (2001)
[CrossRef]

S. Février, P. Viale, F. Gerome, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, G. Monnom, "Very large effective area singlemode photonic bandgap fiber," Electron. Lett. 39, 1240-1242 (2003)
[CrossRef]

European Conf. on Optical Comm. 2002 (1)

S. Février, J.-L. Auguste, J.-M. Blondy, J. Marcou, A. Peyrilloux, P. Roy, D. Pagnoux, "Accurate tuning of the highly-negative-chromatic-dispersion wavelength into a dual concentric core fibre by macro-bending," presented at 28th European Conference on Optical Communication, Copenhagen, Denmark, 8-12 september 2002

Microwave Opt. Technol. Lett. (1)

J. Marcou, S. Février, "Comments on "On the analysis of a weakly guiding doubly clad dielectric optical fiber with an annular core," Microwave Opt. Technol. Lett. 38, 248-254 (2003).
[CrossRef]

OPT Express (1)

S.G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T.D. Engeness, M. Soljacic, S.A. Jacobs, J.D. Joannopoulos, Y. Fink, "Low-loss asymptotically single-mode propagation in large-core Omniguide fibers," Opt. Express 9, 748-779 (2001)
[CrossRef] [PubMed]

Opt. Express (5)

M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004),
[CrossRef] [PubMed]

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004).
[CrossRef] [PubMed]

A. Argyros, T. A Birks, S. G. Leon-Saval, C.M. B. Cordeiro, F. Luan, P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005),
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452 - 8459 (2005).
[CrossRef] [PubMed]

Litchinitser, S. C.Dunn, B. Usner, B.J. Eggleton, T.P. White, R. C. McPhedran, C. Martjin de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996)
[CrossRef] [PubMed]

Photonics West 2005 (1)

K. P. Hansen, J. Broeng, P. M. W. Skovgaard, J. R. Folkenberg, M. D. Nielsen, A. Petersson, T. P. Hansen, C. Jakobsen, H. R. Simonsen, J. Limpert, F. Salin, "High-power photonic crystal fiber lasers: Design, handling and subassemblies," presented at Photonics West, San Jose, CA, (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Refractive index profile and electric field intensity distribution of considered bandgap fiber. The core, high-n layer and low-n layer thicknesses are 22 λ, λ, 9 λ, respectively. (b) Confinement loss computed versus the wavelength for different values of ∆n. Also reported is the material loss.

Fig. 2.
Fig. 2.

(a) Refractive index profile and electric field intensity distribution of designed fiber. (b) Effective index ne of the Bragg mode versus the wavelength compared to clad (pure-silica) index n2 and core (raised) index n1 = n2 + ∆ncore showing n2 < ne < n1 for λ < 0.85 μm, evidencing total-internal-reflection mechanism. (c) Radial electric field distribution canceling at low-/n → high-/n transitions and maximum at high-/n → low-/n transitions characteristic of the bandgap waveguidance mechanism. (d) Confinement loss computed at λ = 0.8 μm versus ∆ncore. ∆n in the cladding layers is 15.10-3. Also reported is the material loss.

Fig. 3.
Fig. 3.

Refractive index profile and electric field intensity distribution in two fabricated fibers (at λ = 833 nm). The fibers’ outer diameter is 125 μm. Fibers were drawn from different preforms explaining the slightly different RIPs. Circles denote measured field intensity distribution while bold line denotes the field distribution computed taking into account the actual index profile.

Fig. 4.
Fig. 4.

Observed near field intensity patterns for (a) L = 1.2 m and (b) L = 30 m and for various launching conditions.

Fig. 5.
Fig. 5.

Attenuation spectra for (a) L = 30 m, (b) L = 100 m. Also reported is the material loss. Differences in position and level of attenuation peaks arise from different RIPs.

Fig. 6.
Fig. 6.

(a) Observed near field intensity pattern corresponding to the coupling between the Gaussian mode and the LP8,1 mode of the first annular waveguide. (b) Effective index versus the wavelength for the Gaussian mode and some modes of the first annular waveguide. Also reported is the refractive index of pure silica.

Fig. 7.
Fig. 7.

Bend loss for bandgap fiber (red), step-index fiber (black) and ideal PCF (blue). Dots: measured data, lines: computed values. In-set: index profile and electric field distribution of SIF.

Tables (1)

Tables Icon

Table 1. Comparison between peak attenuation wavelengths (λp), computed phase-matching wavelengths (λpm) and cut-off wavelengths (λc)

Metrics