Abstract

A thorough investigation of the emission and absorption spectra of the (3 F 4,3 H 6) band in thulium doped silica fibers has been performed. All the basic parameters of thulium in silica have been extracted with the purpose of further analysis in laser and amplifier simulations. The experimental methods used to obtain the scaled cross sections have been carefully selected in order to avoid problems associated with calibrated measurements and knowledge of the radiative lifetime. The values of the absorption cross sections agree well with previously reported values, however the peak emission to peak absorption cross section ratios are found to be significantly below 1. Also confinement factors and thulium concentrations are estimated from the results.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. E. McCumber, "Theory of phonon-terminated optical masers," Phys. Rev. A 134, A299-A306 (1964).
  2. W. J. Miniscalco and R. S. Quimby, "General procedure for the analysis of Er3+ cross sections," Opt. Lett. 16, 258-260 (1991).
    [CrossRef] [PubMed]
  3. M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, "Fundamental limitations of the McCumber Relation Applied to Er-doped Silica and other Amorphous-Host lasers," IEEE J. Quantum Electron. 38, 1629-1637 (2002).
    [CrossRef]
  4. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers - Fundamentals and Technology (Academic Press, 1999).
  5. S. D. Jackson and S. Mossman, "Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers," Appl. Opt. 42, 2702-2707 (2003).
    [CrossRef] [PubMed]
  6. R. D. Muro, S. J. Wilson, N. E. Jolley, B. S. Farley, A. Robinson, and J. Mun, "A new method to determine the Er-fibre gain coefficient from dynamic gain tilt technique," Optical Fiber Communication Conf. 2, 108-110 (1999).
  7. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, 2001).
    [CrossRef]
  8. M. Hellsing, M. Fokine, A. Claesson, L. E. Nilsson, and W. Margulis, "ToF-SIMS imaging of dopant diffusion in optical fibers," Appl. Surf. Sci. 203-204, 648-651 (2003).
    [CrossRef]
  9. H. Zech, "Measurement Technique for the Quotient of Cross Sections σe(λs)/σa(λs) of Erbium-Doped Fibers," IEEE Photonics Technol. Lett. 7, 986-988 (1995).
    [CrossRef]
  10. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and Emission Cross Section of Er3+ Doped Silica Fibers," IEEE J. Quantum Electron. 27, 1004-1010 (1991).
    [CrossRef]
  11. S. D. Jackson and T. A. King, "Theoretical Modeling of Tm-Doped Silica Fiber Lasers," J. Lightwave Techn. 17, 948-956 (1999).
    [CrossRef]
  12. X. Zou and H. Toratani, "Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses," J. Non-crystalline Solids 195, 113-124 (1996).
    [CrossRef]
  13. B. M. Walsh and N. P. Barnes, "Comparison of Tm:ZBLAN and Tm:silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 µm," Appl. Phys. B 78, 325-333 (2004).
    [CrossRef]
  14. H. W. Gandy, R. J. Ginther and J. F. Weller, "Stimulated emission of Tm3+ radiation in silicate glass," J. Appl. Phys. 36, 3030-3031 (1967).
    [CrossRef]

Appl. Opt.

Appl. Phys. B

B. M. Walsh and N. P. Barnes, "Comparison of Tm:ZBLAN and Tm:silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 µm," Appl. Phys. B 78, 325-333 (2004).
[CrossRef]

Appl. Surf. Sci.

M. Hellsing, M. Fokine, A. Claesson, L. E. Nilsson, and W. Margulis, "ToF-SIMS imaging of dopant diffusion in optical fibers," Appl. Surf. Sci. 203-204, 648-651 (2003).
[CrossRef]

IEEE J. Quantum Electron.

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, "Fundamental limitations of the McCumber Relation Applied to Er-doped Silica and other Amorphous-Host lasers," IEEE J. Quantum Electron. 38, 1629-1637 (2002).
[CrossRef]

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and Emission Cross Section of Er3+ Doped Silica Fibers," IEEE J. Quantum Electron. 27, 1004-1010 (1991).
[CrossRef]

IEEE Photonics Technol. Lett.

H. Zech, "Measurement Technique for the Quotient of Cross Sections σe(λs)/σa(λs) of Erbium-Doped Fibers," IEEE Photonics Technol. Lett. 7, 986-988 (1995).
[CrossRef]

J. Appl. Phys.

H. W. Gandy, R. J. Ginther and J. F. Weller, "Stimulated emission of Tm3+ radiation in silicate glass," J. Appl. Phys. 36, 3030-3031 (1967).
[CrossRef]

J. Lightwave Techn.

S. D. Jackson and T. A. King, "Theoretical Modeling of Tm-Doped Silica Fiber Lasers," J. Lightwave Techn. 17, 948-956 (1999).
[CrossRef]

J. Non-crystalline Solids

X. Zou and H. Toratani, "Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses," J. Non-crystalline Solids 195, 113-124 (1996).
[CrossRef]

Opt. Lett.

Optical Fiber Communication Conf.

R. D. Muro, S. J. Wilson, N. E. Jolley, B. S. Farley, A. Robinson, and J. Mun, "A new method to determine the Er-fibre gain coefficient from dynamic gain tilt technique," Optical Fiber Communication Conf. 2, 108-110 (1999).

Phys. Rev. A

D. E. McCumber, "Theory of phonon-terminated optical masers," Phys. Rev. A 134, A299-A306 (1964).

Other

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers - Fundamentals and Technology (Academic Press, 1999).

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Fluorescence decay from a 2 mm long fiber (Tm1) excited by a step pump power at λp = 786 nm along with a fitted double exponential.

Fig. 2.
Fig. 2.

Fluorescence levels generated by pumping at λp = 786 nm (blue +) and 1600 nm (black o) with the individual saturation levels indicated. Also shown are the fitting curves. The fiber is 2 mm of Tm1.

Fig. 3.
Fig. 3.

Absorption cross section of the Tm1 and Tm2 fiber.

Fig. 4.
Fig. 4.

Absorption- and emission cross section of the Tm1-fiber.

Fig. 5.
Fig. 5.

Absorption- and emission cross section of the Tm2-fiber.

Tables (1)

Tables Icon

Table 1. Spectroscopic parameters for Tm3+ doped silica for the (3 F 4,3 H 6) transition found in this work along with previously reported values. Values in small italic are estimated from relevant data or graphs in the references.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

1 τ fl = 1 τ r + 1 τ nr .
x ( r ) = N 2 ( r ) N 1 ( r ) + N 2 ( r ) = σ ap n p ϕ p 2 ( r ) σ ap n p ϕ p 2 ( r ) ( η p + 1 ) + 1 τ fl ,
d n s dz = 2 π 0 ρ ( r ) { [ x ( r ) σ es ( 1 x ( r ) ) σ as ] n s ϕ s 2 ( r )
+ 2 x ( r ) σ es } rdr ,
Γ = 2 π 0 Δ n max ( Δ n ) ϕ n 2 rdr ,
d n s dz = ρ 0 Γ [ ( x σ es ( 1 x σ as ) ) n s + 2 x σ es ] ,
σ a ( λ ) = σ a ( λ p ) GSA ( λ ) GSA ( λ p ) Γ ( λ p ) Γ ( λ ) ,
σ g = ln n s ( L ) n s ( 0 ) < x 1 > ln n s ( L ) n s ( 0 ) < x 2 > = GSA ( η s + 1 ) < Δ x > ,
σ es = σ a ( λ ) ( η ( λ ) + 1 ) σ g ( λ ) σ g ( λ ) σ a ( λ )
1 τ r = 8 π n 2 c σ e λ 4 d λ ,
ρ 0 = GSA σ a Γ

Metrics