Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhanced coupling of terahertz radiation to cylindrical wire waveguides

Open Access Open Access

Abstract

Wire waveguides have recently been shown to be valuable for transporting pulsed terahertz radiation. This technique relies on the use of a scattering mechanism for input coupling. A radially polarized surface wave is excited when a linearly polarized terahertz pulse is focused on the gap between the wire waveguide and another metal structure. We calculate the input coupling efficiency using a simulation based on the Finite Element Method (FEM) Additional FEM results indicate that enhanced coupling efficiency can be achieved through the use of a radially symmetric photoconductive antenna. Experimental results confirm that such an antenna can generate terahertz radiation which couples to the radial waveguide mode with greatly improved efficiency.

©2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Active terahertz two-wire waveguides

Manoj Kumar Mridha, Anna Mazhorova, Matteo Clerici, Ibraheem Al-Naib, Maxime Daneau, Xavier Ropagnol, Marco Peccianti, Christian Reimer, Marcello Ferrera, Luca Razzari, François Vidal, and Roberto Morandotti
Opt. Express 22(19) 22340-22348 (2014)

Coupling of terahertz waves to a two-wire waveguide

Hamid Pahlevaninezhad and Thomas E. Darcie
Opt. Express 18(22) 22614-22624 (2010)

Efficient coupling of propagating broadband terahertz radial beams to metal wires

Zhu Zheng, Natsuki Kanda, Kuniaki Konishi, and Makoto Kuwata-Gonokami
Opt. Express 21(9) 10642-10650 (2013)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) FEM Simulation result of 0.1 THz wave coupling to a wire waveguide using a dual-wire coupling configuration (Ex shown here). The top inset shows a close-up view of the electric field (xz-plane) in the coupling region between the two wires, while the right inset shows the electric field at the end of the wire (xy-plane). Note that the majority of the incident wave scatters into free space, and only 0.4% percent of the incident power is coupled to the guided radial mode. Fig. 1(b) shows the x-component of the electric field along a line 300 microns above the wire and parallel to the wire axis. The inset shows a 0.1 THz sine wave fit to the extracted simulation data. This demonstrates that the simulation is discretized with a mesh density fine enough to resolve the oscillating electric field.
Fig. 2
Fig. 2 (a) Photoconductive antenna with radial symmetry (b) FEM simulation of the power emitted by an “ideal” radial antenna in free space (i.e., no substrate) at 0.5 THz. The antenna sits at the center of the sphere in the xy-plane. The emitted field is zero along the z-axis, as expected for a ‘donut’ mode.
Fig. 3.
Fig. 3. FEM simulation results of the radial antenna in a typical THz configuration. (a) & (b) Plots of the x and y component of the electric field for the idealized radial antenna. (c) & (d) Plots of the x and y component of the electric field for the actual radial antenna.
Fig. 4.
Fig. 4. FEM simulation model of radial antenna coupling to a wire waveguide (a) Plot of Ex at the end of a waveguide coupled to an ideal radial antenna. (b) Plot of Ey at the end of a waveguide coupled to an ideal radial antenna. (c) Plot of Ex at the end of a waveguide coupled to an actual radial antenna. (d) Plot of Ey at the end of a waveguide coupled to an actual radial antenna.
Fig. 5.
Fig. 5. Setup for experimental testing of the radially symmetric terahertz emitter antenna. The emitter was pumped with a free-space beam. A 0.9 mm diameter, 27 cm long wire waveguide was end-coupled to the silicon dome of the emitter. THz radiation was detected at the end of the waveguide by a fiber-coupled LT-GaAs detector sensitive to only the horizontal polarization component.
Fig. 6.
Fig. 6. The wire waveguide end-coupled to the silicon dome, which is mounted on the opposite side of the GaAs substrate from the radial antenna.
Fig. 7.
Fig. 7. Time-domain measurements of the terahertz pulse detected 27 cm away from the radial emitter. Measurements have been performed with the wire waveguide both present (7a) and absent (7b). All other experimental parameters are unchanged. The terahertz pulse exhibits a polarity reversal when measured at opposite locations at the end of the waveguide (upper and lower curves in (a)), a hallmark of the guided mode’s radial polarization.
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.