Abstract

We have measured the enhanced transmission properties of a single subwavelength aperture surrounded by periodically spaced annular grooves using time-domain techniques. While the present measurements utilize terahertz time-domain approaches, with appropriately scaled device parameters, the general observations should be applicable to other spectral ranges. In contrast to measurements that rely on continuous wave excitation and frequency domain measurements, we are able to determine the contribution of each individual groove to the transmitted terahertz waveform. Using structures containing only a single annular groove surrounding the aperture, we find that each groove can couple a large fraction of the incident terahertz bandwidth in the form of a surface wave pulse. When multiple annular grooves surround the aperture, we observe oscillations in the time-domain waveform that are temporally delayed from the initial bipolar waveform in direct relation to the distance of the groove from the aperture. This is further demonstrated by using structures containing defects (absence of annular grooves).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Bethe, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  2. C.J. Bouwkamp, �??Diffraction theory,�?? Rep. Prog. Phys. 17, 35-100 (1954).
    [CrossRef]
  3. D.E. Grupp, H.J. Lezec, T. Thio, T.W. Ebbesen, �??Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,�?? Adv. Mater. 11, 860-862 (1999).
    [CrossRef]
  4. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, �??Extraordinary optical transmission through subwavelength hole arrays,�?? Nature 391, 667-669 (1998).
    [CrossRef]
  5. T. Thio, K.M. Pellerin, R.A. Linke, H.J. Lezec, T.W. Ebbesen, �??Enhanced light transmission through a single subwavelength aperture,�?? Opt. Lett. 26, 1972-1974 (2001).
    [CrossRef]
  6. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, F. Martin-Moreno, L.J. Garcia-Vidal, and T.W. Ebbesen, �??Beaming light from a subwavelength aperture,�?? Science 297, 220-222 (2002).
    [CrossRef]
  7. T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, R.A. Linke, �??Giant optical transmission of sub-wavelength apertures: physics and applications,�?? Nanotechnology 13, 429-432 (2002).
    [CrossRef]
  8. A. Nahata, R.A. Linke, T. Ishi, and K. Ohashi, �??Enhanced nonlinear optical conversion using periodically nanostructured metal films,�?? Opt. Lett. 28, 423-425 (2003).
    [CrossRef] [PubMed]
  9. M.J. Lockyear, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, �??Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,�?? Appl. Phys. Lett. 84, 2040-2042 (2004).
    [CrossRef]
  10. A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3694">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3694</a>.
    [CrossRef] [PubMed]
  11. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629</a>.
    [CrossRef] [PubMed]
  12. A.P. Hibbins, J.R. Sambles, and C.R. Lawrence, �??Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,�?? Appl. Phys. Lett. 81, 4661-4663 (2002).
    [CrossRef]
  13. M.J. Lockyear, A.P. Hibbins, J.R. Sambles, and C.R. Lawrence, �??Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,�?? J. Opt. A: Pure Appl. Opt. 7, S152-S158 (2005).
    [CrossRef]
  14. S.S. Akarca-Biyikli, I. Bulu, and E. Ozbay, �??Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,�?? Appl. Phys. Lett. 85, 1098-2000 (2004).
    [CrossRef]
  15. H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13, 763-769 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763</a>.
    [CrossRef] [PubMed]
  16. F. J. Garcýa-Vidal, L. Martin-Moreno, H. J. Lezec and T. W. Ebbesen, �??Focusing light with a single subwavelength aperture flanked by surface corrugations,�?? Appl. Phys. Lett. 83, 2000-2002 (2003).
    [CrossRef]
  17. L. Martin-Moreno, F.J. Garcýa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, �??Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,�?? Phys. Rev. Lett. 90, 167401/1-4 (2003).
    [CrossRef]
  18. M.M.J. Treacy, �??Dynamical diffraction in metallic optical gratings,�?? Appl. Phys. Lett. 75, 606-608 (1999).
    [CrossRef]
  19. Q. Cao and P. Lalanne, �??Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,�?? Phys. Rev. Lett. 88, 057403/1-4 (2002).
    [CrossRef]
  20. D. Grischkowsky, in Frontiers in Nonlinear Optics, edited by H. Walther, N. Koroteev, and M.O. Scully (Institute of Physics Publishing, Philadelphia, 1992) and references therein.
  21. H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664-3672 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664</a>
    [CrossRef] [PubMed]
  22. J. Gomez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J.A. Sanchez-Gil, �??Propagation of surface plasmon polaritons on semiconductor gratings,�?? Phys. Rev. Lett. 93, 256804/1-4 (2004).

Adv. Mater.

D.E. Grupp, H.J. Lezec, T. Thio, T.W. Ebbesen, �??Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,�?? Adv. Mater. 11, 860-862 (1999).
[CrossRef]

Appl. Phys. Lett.

M.J. Lockyear, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, �??Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,�?? Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

A.P. Hibbins, J.R. Sambles, and C.R. Lawrence, �??Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,�?? Appl. Phys. Lett. 81, 4661-4663 (2002).
[CrossRef]

S.S. Akarca-Biyikli, I. Bulu, and E. Ozbay, �??Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,�?? Appl. Phys. Lett. 85, 1098-2000 (2004).
[CrossRef]

F. J. Garcýa-Vidal, L. Martin-Moreno, H. J. Lezec and T. W. Ebbesen, �??Focusing light with a single subwavelength aperture flanked by surface corrugations,�?? Appl. Phys. Lett. 83, 2000-2002 (2003).
[CrossRef]

M.M.J. Treacy, �??Dynamical diffraction in metallic optical gratings,�?? Appl. Phys. Lett. 75, 606-608 (1999).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

M.J. Lockyear, A.P. Hibbins, J.R. Sambles, and C.R. Lawrence, �??Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,�?? J. Opt. A: Pure Appl. Opt. 7, S152-S158 (2005).
[CrossRef]

Nanotechnology

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, R.A. Linke, �??Giant optical transmission of sub-wavelength apertures: physics and applications,�?? Nanotechnology 13, 429-432 (2002).
[CrossRef]

Nature

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, �??Extraordinary optical transmission through subwavelength hole arrays,�?? Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

H. Bethe, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. Lett.

L. Martin-Moreno, F.J. Garcýa-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, �??Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,�?? Phys. Rev. Lett. 90, 167401/1-4 (2003).
[CrossRef]

J. Gomez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J.A. Sanchez-Gil, �??Propagation of surface plasmon polaritons on semiconductor gratings,�?? Phys. Rev. Lett. 93, 256804/1-4 (2004).

Q. Cao and P. Lalanne, �??Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,�?? Phys. Rev. Lett. 88, 057403/1-4 (2002).
[CrossRef]

Rep. Prog. Phys.

C.J. Bouwkamp, �??Diffraction theory,�?? Rep. Prog. Phys. 17, 35-100 (1954).
[CrossRef]

Science

H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, F. Martin-Moreno, L.J. Garcia-Vidal, and T.W. Ebbesen, �??Beaming light from a subwavelength aperture,�?? Science 297, 220-222 (2002).
[CrossRef]

Other

D. Grischkowsky, in Frontiers in Nonlinear Optics, edited by H. Walther, N. Koroteev, and M.O. Scully (Institute of Physics Publishing, Philadelphia, 1992) and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Photographs of typical bullseye structures consisting of only one annular groove (b) Cross-sectional line diagrams of the structures used. The radius of the center of the annular groove for the 4 upper structures shown in Fig. 1B vary at RK=KP, where K=3,4,5,6 and P=0.8 mm. (c) Five experimentally observed time-domain waveforms for the structures shown in part (b). The temporal waveforms have been offset from the origin for clarity. The arrows point to the oscillation that arises from coupling of the incident THz pulse to a surface wave pulse. The temporal change in the location of this oscillation corresponds directly to the change in distance of the annular groove from the aperture. The decrease in the magnitude of the oscillations with increasing K is related to the spatial profile of the incident THz beam.

Fig. 2.
Fig. 2.

(a) Schematic drawing showing the two contributions to the transmitted THz time-domain waveform. The component shown by the red arrow corresponds to the non-resonant transmission of the incident THz pulse through the subwavelength aperture. The component shown by the blue arrow corresponds to the contribution that arises from the interaction of the incident THz pulse with the structured surface. This latter component is smaller than the non-resonant component and temporally delayed. (b) Time-domain waveform for K=4 from Fig. 1A. The blue portion of the temporal waveform corresponds to the contribution that arises from coupling of the incident THz pulse by the annular groove (C) Amplitude spectra of the initial bipolar waveform (red) and the time-delayed oscillation (blue). The blue trace has been multiplied by a factor of 3.

Fig. 3.
Fig. 3.

(a) Photographs of typical bullseye structures consisting of periodic multiple annular grooves (b) Cross-sectional line diagrams of the structures used (c) Five experimentally observed time-domain waveforms for the structures shown in part (b). The temporal waveforms have been offset from the origin for clarity. The number of oscillations, after the initial bipolar waveform, matches the number of annular grooves.

Fig. 4.
Fig. 4.

(a) Photographs of typical bullseye structures containing defects (absence of annular grooves) (b) Cross-sectional line diagrams of the structures used (c) Five experimentally observed time-domain waveforms for the structures shown in part (b). The temporal waveforms have been offset from the origin for clarity. The arrows point to the temporal locations of the defects. The suppressed oscillation at the temporal location of the defect can be attributed primarily to the superposition of the trailing portion of the oscillation from the preceding groove and the leading portion of the oscillation from the following groove.

Metrics