Abstract

We have demonstrated all-optical bistable switching operation of resonant-tunnelling devices with ultra-small high-Q Si photonic-crystal nanocavities. Due to their high Q/V ratio, the switching energy is extremely small in comparison with that of conventional devices using the same optical nonlinear mechanism. We also show that they exhibit all-optical-transistor action by using two resonant modes. These ultrasmall unique nonlinear bistable devices have potentials to function as various signal processing functions in photonic-crystal-based optical-circuits.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, �??Photonic crystals: putting a new twist on light,�?? Nature 386, 143-149 (1997).
    [CrossRef]
  3. K. J. Vahala, �??Optical microcavities,�?? Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  4. Y. Akahane, T. Asano, B-S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  5. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, �??Experimental demonstration of a high quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915-1917 (2003).
    [CrossRef]
  6. E. Centeno and D. Felbacq, �??Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity,�?? Phys. Rev. B 62, 7683-7686(R) (2000).
    [CrossRef]
  7. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, �??Optimal bistable switching in nonlinear photonic crystals,�?? Phys. Rev. E 66, 055601(R) (2002).
    [CrossRef]
  8. M. F. Yanik, S. Fan, and M. Soljacic, �??High-contrast all-optical bistable switching in photonic crystal microcavities,�?? Appl. Phys. Lett. 83, 2739-2741 (2003).
    [CrossRef]
  9. A. R. Cowan and J. F. Young, �??Optical bistability involving photonic crystal microcavities and Fano line shapes,�?? Phys. Rev. E 68, 046606 (2003).
    [CrossRef]
  10. M. Soljacic and J.D. Joannopoulos, �??Enhancement of nonlinear effects using photonic crystals,�?? Nature Materials 3, 211-219 (2004), and references therein
    [CrossRef] [PubMed]
  11. S. Mitsugi, A. Shinya, E. Kuramochi, M. Notomi, T. Tsuchizawa, and T. Watanabe, "Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs," in Proceedings of 16th Annual Meeting of IEEE LEOS (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 214-215.
  12. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, �??Waveguides, resonators and their coupled elements in photonic crystal slabs,�?? Opt. Express 12,1551-1561 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551</a>.
    [CrossRef] [PubMed]
  13. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, �??Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  14. S. F. Mingaleev and Y. S. Kivshar, �??Nonlinear transmission and light localization in photonic-crystal waveguides,�?? J. Opt. Sci. Am. B 19, 2241-2249 (2002).
    [CrossRef]
  15. H.M. Gibbs, Optical bistability: controlling light with light. (Academic Press, Orlando, 1985).
  16. S. D. Smith, A. C. Walker, F. A. P. Tooley, and B. S. Wherrett, �??The demonstration of restoring digital optical logic,�?? Nature 325, 27-31 (1987)
    [CrossRef]
  17. S. D. Smith, �??Optical bistability, photonic logic, and optical computation,�?? Appl. Opt. 25, 1550-1564 (1986).
    [CrossRef] [PubMed]
  18. H.A. Haus, Waves and fields in optoelectronics (Prince-Hall, New Jersey, 1984).
  19. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002).
    [CrossRef]
  20. G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, �??Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,�?? Appl. Phys. Lett. 45, 1031-1033 (1984).
    [CrossRef]
  21. B. S. Wherrett, A. K. Darzi, Y. T. Chow, B. T. McGuckin, and E. W. Van Stryland, �??Ultrafast therma refractive nonlinearities in bistable interference filters,�?? J. Opt. Soc. Am. B 7, 215-219 (1990)
    [CrossRef]
  22. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, P-T. Ho, �??Optical signal processing using nonlinear semiconductor microring resonators,�?? IEEE J. Select. Top. Quantum Electron. 8, 705-713 (2002).
    [CrossRef]
  23. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia �??A high-speed silicon optical modulator based on a metal-oxidesemiconductor capacitor,�?? Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  24. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801</a>.
    [CrossRef] [PubMed]
  25. V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004).
    [CrossRef] [PubMed]
  26. G. Cocorullo and I. Rendina, "Thermo-optical modulation at 1.5 µm in silicon etalon," Electron. Lett. 28, 83- 85 (1992).
    [CrossRef]
  27. O. Madelung, M. Schulz, and H. Weiss, Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein, New Series, Vol. 17 (Springer-Verlag, Berlin, 1982).

Appl. Opt. (1)

Appl. Phys. Lett. (4)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, �??Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,�?? Appl. Phys. Lett. 45, 1031-1033 (1984).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, �??Experimental demonstration of a high quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljacic, �??High-contrast all-optical bistable switching in photonic crystal microcavities,�?? Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

Electron. Lett. (1)

G. Cocorullo and I. Rendina, "Thermo-optical modulation at 1.5 µm in silicon etalon," Electron. Lett. 28, 83- 85 (1992).
[CrossRef]

IEEE J. Select. Top. Quantum Electron. (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, P-T. Ho, �??Optical signal processing using nonlinear semiconductor microring resonators,�?? IEEE J. Select. Top. Quantum Electron. 8, 705-713 (2002).
[CrossRef]

IEEE LEOS 2003 (1)

S. Mitsugi, A. Shinya, E. Kuramochi, M. Notomi, T. Tsuchizawa, and T. Watanabe, "Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs," in Proceedings of 16th Annual Meeting of IEEE LEOS (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 214-215.

J. Opt. Sci. Am. B (1)

S. F. Mingaleev and Y. S. Kivshar, �??Nonlinear transmission and light localization in photonic-crystal waveguides,�?? J. Opt. Sci. Am. B 19, 2241-2249 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Landolt-Börnstein, New Series (1)

O. Madelung, M. Schulz, and H. Weiss, Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein, New Series, Vol. 17 (Springer-Verlag, Berlin, 1982).

Nature (5)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia �??A high-speed silicon optical modulator based on a metal-oxidesemiconductor capacitor,�?? Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

S. D. Smith, A. C. Walker, F. A. P. Tooley, and B. S. Wherrett, �??The demonstration of restoring digital optical logic,�?? Nature 325, 27-31 (1987)
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, �??Photonic crystals: putting a new twist on light,�?? Nature 386, 143-149 (1997).
[CrossRef]

K. J. Vahala, �??Optical microcavities,�?? Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B-S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Nature Materials (1)

M. Soljacic and J.D. Joannopoulos, �??Enhancement of nonlinear effects using photonic crystals,�?? Nature Materials 3, 211-219 (2004), and references therein
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optics Express (1)

P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801</a>.
[CrossRef] [PubMed]

Phys. Rev. B (1)

E. Centeno and D. Felbacq, �??Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity,�?? Phys. Rev. B 62, 7683-7686(R) (2000).
[CrossRef]

Phys. Rev. E (2)

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, �??Optimal bistable switching in nonlinear photonic crystals,�?? Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

A. R. Cowan and J. F. Young, �??Optical bistability involving photonic crystal microcavities and Fano line shapes,�?? Phys. Rev. E 68, 046606 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, �??Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Other (2)

H.M. Gibbs, Optical bistability: controlling light with light. (Academic Press, Orlando, 1985).

H.A. Haus, Waves and fields in optoelectronics (Prince-Hall, New Jersey, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Photonic resonant-tunnelling device based on photonic-crystal nanocavity. (a) Scanning electron microscope image of a fabricated device. (b) Schematic description of our device.

Fig. 2.
Fig. 2.

Resonant modes of resonant-tunneling devices. (a) Transmission spectrum in a linear regime. (b, c) Field distribution of resonant modes. The calculated mode volumes are 0.102 µm3 (A) and 0.080 µm3 (B). (d, e) Detailed transmission spectra near the resonant wavelength. The transmittance is normalized at the peak. The width is estimated by Lorentzian fitting.

Fig. 3.
Fig. 3.

Bistable operation using single wavelength. (a) Intensity-dependent transmission spectra taken by a tunable laser in the upsweep condition. The wavelength sweep direction is indicated by arrows. (b) Output power (POUT) versus input power (PIN) for various detuning (δ) values. The sweep direction of PIN is indicated by arrows. The nonlinear regime starts from 10 µW, and the bistable regime starts from 40 µW.

Fig. 4.
Fig. 4.

Switch-off time and switching energy. (a) Temporal response of the probe output. At t=800 nsec, the pump signal was switched off. The input instantaneous power for the pump is 64 µW. The pulse width and period are 400 nsec/40 µsec. (b) Estimated switch-on energy which is the product of the incident energy and the time required for switch-on.

Fig. 5.
Fig. 5.

All-optical switching operation using two wavelengths. (a) Schematic of operation. (b) Change in the transmission spectrum for mode B during the bistable switching of mode A. Conditions 1, 2, 3 correspond to 1, 2, 3 in curve (a). P IN(B) was approximately 1 µW. (c) Bistability of POUT(B) versus PIN(A) for various δA. δB is set at zero. The sweep direction of PIN(A) is indicated by arrows. We used a bandpass filter to measure P OUT(B). (d) Bistability of POUT(B) versus PIN(A) for two different δB. δA is set at 180 pm.

Fig. 6.
Fig. 6.

(a) Change in the transmission intensity at the switching (ΔPOUT(B)) as a function of δ B. δ A is set at 180 pm. The positive maximum of ΔPOUT(B) occurs at δB=0, and the negative maximum of ΔPOUT(B) occurs at δB~200 pm, which equals the width of mode B. (b) AC signal amplification experiment. A detuning condition is chosen where the hysteresis is small but the nonlinearity is large.

Tables (1)

Tables Icon

Table 1. Material parameters for Si used for estimation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = ( Q L Q C ) 2 , where 1 Q L = 1 Q U + 1 Q C .

Metrics