Abstract

We demonstrate a multi-functional optical trap capable of trapping, motion control, position sensing and fluorescence detection of chemically treated polystyrene beads, using off-the-shelve optical components. It consists of two collinearly aligned single-mode fibers separated by a spacing of 130–170µm for trapping, another single-mode fiber for probing/pumping and a fourth multi-mode fiber for optical detection. The fibers are mounted either on V-grooved Si or PDMS platforms fabricated using microfabrication and molding techniques, respectively. The result represents an important milestone towards a functional integrated trapping platform.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C.L. Kuyper and D. Chiu, �??Optical Trapping: A versatile technique for biomanipulation,�?? Appl. Spectr. 56, 300A-312A (2002).
    [CrossRef]
  2. A. Constable, J. Kim, J. Mervis, F. Zarinetchi and M. Prentiss, �??Demonstration of a fiber-optical light-force trap,�?? Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  3. E.R. Lyons and G.J. Sonek, �??Confinement and bistability in a tapered hemispherical lensed optical fiber trap,�?? Appl. Phys. Lett. 66, 1584-1586 (1995).
    [CrossRef]
  4. E. Sidick, S.D. Collins, and A. Knoesen, �??Trapping forces in a multiple-beam fiber-optic trap�?? Appl. Opt. 36,6423-6433 (1997).
    [CrossRef]
  5. J. Guck, R. Ananthakrishnan, H. Mahmood, T.J. Moon, C.C. Cunningham and J. Käs, �??The optical stretcher: A novel laser tool to micromanipulate cells,�?? Biophy. J. 81, 767-784 (2001).
    [CrossRef]
  6. Y. Ogura, K. Kagawa and J. Tanida, �??Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources,�?? Appl. Opt. 40, 5430-5435 (2001).
    [CrossRef]
  7. R.A. Flynn, A.L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M.W. Wang and S.C. Esener, �??Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,�?? Sens and Actuat. 87, 239- 243 (2002).
    [CrossRef]
  8. S. McGreehin, L.O�??Faolin, J. Roberts, T. Krauss and K. Dholakia, �??Optoelectronic Integrated Tweezers,�?? in Optical Trapping and Optical Manipulation, K. Dholakia and G.C. Spalding, eds., Proc. SPIE 5514, 55-61 (2004)
  9. I.A. Vorobjev, H. Liang, W.H. Wright and M. Berns, �??Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges,�??Biophy. J. 64, 533-538 (1993).
    [CrossRef]
  10. J. Cooper McDonald, D.C. Duffy, J. R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides, �??Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27-40 (2000).
    [CrossRef]
  11. E.R. Lyons, �??Application of fiber optic techniques to optical trapping,�?? Master�??s Thesis, University of California, Irvine (1994).
  12. M. Bachman, Y.M. Chiang, C. Chu and G.P. Li, �??Laminated microfluidic structures using a micromolding technique,�?? in Microfluidic Devices and Systems II, C.H. Ahn and A.B. Frazier, eds., Proc. SPIE 3877, 139-146 (1999).

Appl. Opt.

Appl. Phys. Lett.

E.R. Lyons and G.J. Sonek, �??Confinement and bistability in a tapered hemispherical lensed optical fiber trap,�?? Appl. Phys. Lett. 66, 1584-1586 (1995).
[CrossRef]

Appl. Spectr.

C.L. Kuyper and D. Chiu, �??Optical Trapping: A versatile technique for biomanipulation,�?? Appl. Spectr. 56, 300A-312A (2002).
[CrossRef]

Biophy. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T.J. Moon, C.C. Cunningham and J. Käs, �??The optical stretcher: A novel laser tool to micromanipulate cells,�?? Biophy. J. 81, 767-784 (2001).
[CrossRef]

I.A. Vorobjev, H. Liang, W.H. Wright and M. Berns, �??Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges,�??Biophy. J. 64, 533-538 (1993).
[CrossRef]

Electrophoresis

J. Cooper McDonald, D.C. Duffy, J. R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides, �??Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27-40 (2000).
[CrossRef]

Opt. Lett.

Proc. SPIE

S. McGreehin, L.O�??Faolin, J. Roberts, T. Krauss and K. Dholakia, �??Optoelectronic Integrated Tweezers,�?? in Optical Trapping and Optical Manipulation, K. Dholakia and G.C. Spalding, eds., Proc. SPIE 5514, 55-61 (2004)

M. Bachman, Y.M. Chiang, C. Chu and G.P. Li, �??Laminated microfluidic structures using a micromolding technique,�?? in Microfluidic Devices and Systems II, C.H. Ahn and A.B. Frazier, eds., Proc. SPIE 3877, 139-146 (1999).

Sens and Actuat.

R.A. Flynn, A.L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M.W. Wang and S.C. Esener, �??Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers,�?? Sens and Actuat. 87, 239- 243 (2002).
[CrossRef]

Other

E.R. Lyons, �??Application of fiber optic techniques to optical trapping,�?? Master�??s Thesis, University of California, Irvine (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

As the optical power in the left fiber is increased, the scattering force increases and the trapped bead translates to the left (a→c). The bead appears red due to the scattered 660nm trap/excitation light.

Fig. 2.
Fig. 2.

The silicon platform optical trap (a) consists of four orthogonal fibers. A magnified view of the optical trap (b) reveals the trapping area between the four, cleaved fibers with a single, optically trapped bead.

Fig. 3.
Fig. 3.

Optical spectrometer data (a) indicating 660nm probing light and 830nm trapping light scattered by an optically trapped bead located at the center of the trap. Spectrometer data (b) indicating detection of 660nm probing light only for a bead trapped off-center.

Fig. 4.
Fig. 4.

Integrated peak values for light scattered from a trapped bead (830nm) and excitation light (660nm). As the bead is translated across the trap region, the scattered trap light and excitation light change in a complementary manner. Also note, the spatial resolution is greater for the 62.5µm (bottom) collection fiber in comparison to the 100µm (top) fiber.

Fig. 5.
Fig. 5.

The polymer platform optical trap (a) consisting of three orthogonal fibers mounted with optical adhesive and glass coverslips. A magnified view of the optical trap (b) reveals the trapping area between the cleaved fibers.

Fig. 6.
Fig. 6.

Optical spectrometer data for the scattered light from a single, trapped, chemically treated bead. In this configuration, a 980nm laser and a 660nm laser are used to trap the bead. The 660nm trapping laser also serves as an excitation source, causing the trapped bead to fluoresce. Fiber orientation of the trap is provided for reference (inset).

Fig. 7.
Fig. 7.

Optical spectrometer data for the scattered light from a single, trapped, chemically treated bead. In this configuration, an 830nm laser and a 980nm laser are used to trap the bead. The 660nm excitation laser is positioned below the trap platform, exciting the trapped bead through the PDMS resulting in fluorescence. Fiber orientation of the trap is provided for reference (inset).

Metrics