Abstract

A compact in-plane channel drop filter design in 2D hexagonal lattice photonic crystal slabs is presented in this paper. The system consists of two photonic crystal waveguides and a single cavity with two degenerate modes. Both modes are able to confine light strongly in the vertical dimension and prove to couple equally into the waveguides. Three dimensional finite difference time domain simulations show that the quality factor is around 3,000. At resonance, power transferred to the drop waveguide is 78% and only 1.6% remains in the bus waveguide. We also show that by carefully tuning the drop waveguide boundary, light remaining in the bus can be further reduced to below 0.4% and thus the channel isolation is larger than 22dB.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited Spontaneous Emission in Solid-State Physics and Electronics,�?? Phys. Rev. Lett. 58, 2059 (1987)
    [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987)
    [CrossRef] [PubMed]
  3. H. Benisty, �??Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,�?? J. Appl. Phys. 75, 4753 (1994)
  4. A. Mekis, S. Fan, and J. D. Joannopoulos, �??Bound states in photonic crystal waveguides and waveguide bends,�?? Phys. Rev. B 58, 4809 (1998)
    [CrossRef]
  5. T. F. Krauss, R. M. De La Rue, and S. Brand, �??Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,�?? Nature 383, 699 (1996)
    [CrossRef]
  6. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B, 60, 5751 (1999)
    [CrossRef]
  7. Y. Akahane, T. Asano, B. S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944 (2003)
    [CrossRef] [PubMed]
  8. H. Y. Ryu, M. Notomi, and Y. H. Lee, �??High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,�?? Appl. Phys. Lett. 83, 4294 (2003)
    [CrossRef]
  9. Z. Zhang and M. Qiu, �??Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,�?? Opt. Express 12, 3988 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3988">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3988</a>
    [CrossRef] [PubMed]
  10. K. Srinivasan and O. Painter, �??Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals,�?? Opt. Express 11, 579 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-579">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-579</a>
    [CrossRef] [PubMed]
  11. M. Tokushima and H. Yamada, �??Light propagation in a photonic-crystal-slab line-defect waveguide,�?? IEEE J. of Quantum Electron. 38, 753 (2002)
    [CrossRef]
  12. A. Sugitatsu, T. Asano and S. Noda, �??Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs,�?? Appl. Phys. Lett. 84, 5395 (2004)
    [CrossRef]
  13. M. Qiu and B. Jaskorzynska, �??A design of a channel drop filter in a two-dimensional triangular photonic crystal,�?? Appl. Phys. Lett. 83, 1074 (2003)
    [CrossRef]
  14. M. Qiu, �??Ultra-compact optical filter in two-dimensional photonic crystal,�?? Electron. Lett. 40, 539 (2004)
    [CrossRef]
  15. S. Noda, A. Chutinan and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608 (2000)
    [CrossRef] [PubMed]
  16. B. S. Song, S. Noda and T. Asano, �??Photonic Devices Based on In-Plane Hetero Photonic Crystals,�?? Science 300, 1537 (2003)
    [CrossRef] [PubMed]
  17. A. Chutinan, M. Mochizuki, M. Imada and S. Noda, �??Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 79, 2690 (2001)
    [CrossRef]
  18. B. K. Min, J. E. Kim and H. Y. Park, �??High-efficiency Surface-emitting channel drop filters in two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 86, 11106 (2005)
    [CrossRef]
  19. B. K. Min, J. E. Kim and H. Y. Park, �??Channel drop filters using resonant tunnelling processes in two-dimensional triangular lattice photonic crystal slabs,�?? Optics Commun. 237, 59 (2004)
    [CrossRef]
  20. K. H. Hwang and G. H. Song, �??Design of a Two-Dimensional Photonic-Crystal Channel-Drop Filter Based on the Triangular-Lattice Holes on the Slab Structure,�?? Proceedings of 30th European Conference on Optical Communication, 5, 76 (Stockholm, Sweden, 2004)
  21. S. Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, �??Channel Drop Tunneling through Localized States,�?? Phys. Rev. Lett. 80, 960 (1998)
    [CrossRef]
  22. C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus and J. D. Joannopoulos, �??Coupling of Modes Analysis of Resonant Channel Add-Drop Filters,�?? IEEE J. of Quantum Electron. 35, 1322 (1999)
    [CrossRef]
  23. Y. Xu, Y. Li, E. K. Lee and A. Yariv, �??Scattering-theory analysis of waveguide-resonator coupling,�?? Phys. Rev. E. 62, 7389 (2000)
    [CrossRef]
  24. J. Vuèkoviæ, M. lonèar, H. Mabuchi and A. Scherer, �??Optimization of the Q factor in photonic crystal microcavities,�?? IEEE J. of Quantum Electron. 38, 850 (2002)
    [CrossRef]
  25. K. S. Yee, �??Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,�?? IEEE Trans. Antennas and Propagation, 14, 302 (1966)
    [CrossRef]
  26. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185 (1994)
    [CrossRef]
  27. M. Qiu and Z. Zhang, �??High Q Microcavities in 2D Photonic Crystal Slabs Studied by FDTD Techniques and Padé Approximation,�?? Proc. SPIE. 5733, (2005, to be published)
    [CrossRef]
  28. W. H. Guo, W. J. Li, and Y. Z. Huang, �??Computation of Resonant Frequencies and Quality Factors of Cavities by FDTD Technique and Padé Approximation,�?? IEEE Microwave Wireless Components Lett. 11, 223 (2001)
    [CrossRef]

Appl. Phys. Lett.

A. Sugitatsu, T. Asano and S. Noda, �??Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs,�?? Appl. Phys. Lett. 84, 5395 (2004)
[CrossRef]

M. Qiu and B. Jaskorzynska, �??A design of a channel drop filter in a two-dimensional triangular photonic crystal,�?? Appl. Phys. Lett. 83, 1074 (2003)
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada and S. Noda, �??Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 79, 2690 (2001)
[CrossRef]

B. K. Min, J. E. Kim and H. Y. Park, �??High-efficiency Surface-emitting channel drop filters in two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 86, 11106 (2005)
[CrossRef]

H. Y. Ryu, M. Notomi, and Y. H. Lee, �??High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,�?? Appl. Phys. Lett. 83, 4294 (2003)
[CrossRef]

Electron. Lett.

M. Qiu, �??Ultra-compact optical filter in two-dimensional photonic crystal,�?? Electron. Lett. 40, 539 (2004)
[CrossRef]

European Conf. on Optical Commun. 2004

K. H. Hwang and G. H. Song, �??Design of a Two-Dimensional Photonic-Crystal Channel-Drop Filter Based on the Triangular-Lattice Holes on the Slab Structure,�?? Proceedings of 30th European Conference on Optical Communication, 5, 76 (Stockholm, Sweden, 2004)

IEEE J. of Quantum Electron.

J. Vuèkoviæ, M. lonèar, H. Mabuchi and A. Scherer, �??Optimization of the Q factor in photonic crystal microcavities,�?? IEEE J. of Quantum Electron. 38, 850 (2002)
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus and J. D. Joannopoulos, �??Coupling of Modes Analysis of Resonant Channel Add-Drop Filters,�?? IEEE J. of Quantum Electron. 35, 1322 (1999)
[CrossRef]

M. Tokushima and H. Yamada, �??Light propagation in a photonic-crystal-slab line-defect waveguide,�?? IEEE J. of Quantum Electron. 38, 753 (2002)
[CrossRef]

IEEE Microwave Wireless Components

W. H. Guo, W. J. Li, and Y. Z. Huang, �??Computation of Resonant Frequencies and Quality Factors of Cavities by FDTD Technique and Padé Approximation,�?? IEEE Microwave Wireless Components Lett. 11, 223 (2001)
[CrossRef]

IEEE Trans. Antennas and Propagation

K. S. Yee, �??Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,�?? IEEE Trans. Antennas and Propagation, 14, 302 (1966)
[CrossRef]

J. Appl. Phys.

H. Benisty, �??Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,�?? J. Appl. Phys. 75, 4753 (1994)

J. Comput. Phys.

J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185 (1994)
[CrossRef]

Nature

S. Noda, A. Chutinan and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608 (2000)
[CrossRef] [PubMed]

T. F. Krauss, R. M. De La Rue, and S. Brand, �??Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,�?? Nature 383, 699 (1996)
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944 (2003)
[CrossRef] [PubMed]

Opt. Express

Optics Commun.

B. K. Min, J. E. Kim and H. Y. Park, �??Channel drop filters using resonant tunnelling processes in two-dimensional triangular lattice photonic crystal slabs,�?? Optics Commun. 237, 59 (2004)
[CrossRef]

Phys. Rev. B

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B, 60, 5751 (1999)
[CrossRef]

A. Mekis, S. Fan, and J. D. Joannopoulos, �??Bound states in photonic crystal waveguides and waveguide bends,�?? Phys. Rev. B 58, 4809 (1998)
[CrossRef]

Phys. Rev. E.

Y. Xu, Y. Li, E. K. Lee and A. Yariv, �??Scattering-theory analysis of waveguide-resonator coupling,�?? Phys. Rev. E. 62, 7389 (2000)
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, �??Inhibited Spontaneous Emission in Solid-State Physics and Electronics,�?? Phys. Rev. Lett. 58, 2059 (1987)
[CrossRef] [PubMed]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987)
[CrossRef] [PubMed]

S. Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, �??Channel Drop Tunneling through Localized States,�?? Phys. Rev. Lett. 80, 960 (1998)
[CrossRef]

Proc. SPIE

M. Qiu and Z. Zhang, �??High Q Microcavities in 2D Photonic Crystal Slabs Studied by FDTD Techniques and Padé Approximation,�?? Proc. SPIE. 5733, (2005, to be published)
[CrossRef]

Science

B. S. Song, S. Noda and T. Asano, �??Photonic Devices Based on In-Plane Hetero Photonic Crystals,�?? Science 300, 1537 (2003)
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (1293 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Top view of the system. Selected channel is transferred along the forward direction of the drop waveguide. The cavity involves a central large air hole surrounded by 4 hexagons of lattice. The radii of air holes on the hexagons are tuned into a graded pattern following equation (3). (b) Hz field distribution of the even mode at central slab plane. (c) Hz field distribution of the odd mode at central slab plane. The mirror planes are shown as the dashed lines.

Fig. 2.
Fig. 2.

Tuning of the cavity shown in Fig. 1(a). The lattice constant a is 420nm. (a) Variations of central wavelengths of the two modes. (b) Variations of total Q factors. (c) Central wavelength difference shifts. (d) Q factor difference shifts. The region inside the dashed circle is the work region, where the two modes have closest central wavelengths and Q factors.

Fig. 3.
Fig. 3.

Intensity spectra for the structure shown in Fig. 1(a). The wavelengths correspond to a lattice constant of 420nm.

Fig. 4.
Fig. 4.

The radius of air holes on the upper boundary of the drop waveguide is modified into Rw in order to reduce the signal power remained in the bus waveguide.

Fig. 5.
Fig. 5.

Steady state Hz field oscillation at resonant frequency for the structure shown in Fig. 1(a) and 4, with Rw=0.27. (Movie 1,293 KB)

Tables (1)

Tables Icon

Table 1. Signal power remained and transferred at resonance with different Rw

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T 2 = ( 1 1 + 2 τ o τ e ) 2 = ( 1 1 + 2 Q o Q e ) 2 ( 1 1 + Q Q ∣∣ ) 2 ,
D 2 = ( 2 2 + 2 τ e τ o ) 2 = ( 2 2 + Q e Q o ) 2 ( 1 1 + Q ∣∣ Q ) 2 ,
R m = R 1 ( m 1 ) 2 ( R 1 R 4 ) 9 ; m = 1,2,3,4 .
T 2 = ( 1 1 τ e 1 1 τ e 1 + 1 τ ' e 1 + 1 τ o 1 1 τ e 2 1 τ e 2 + 1 τ ' e 2 + 1 τ o 2 ) 2
= ( τ e 1 τ ' e 1 · τ e 2 τ ' e 2 + τ e 1 τ ' e 1 · τ e 2 τ o 2 + τ e 1 τ o 1 · τ e 2 τ ' e 2 + τ e 1 τ o 1 · τ e 2 τ o 2 1 ( 1 + τ e 1 τ ' e 1 + τ e 1 τ o 1 ) ( 1 + τ e 2 τ ' e 2 + τ e 2 τ o 2 ) ) 2 ,

Metrics