Abstract

We report measurement of co- and cross-polarized Raman gain spectra at the zero-dispersion wavelength of standard dispersion-shifted fiber for detunings down to 0.17 THz (5.7cm-1) on both Stokes and anti-Stokes sides by using a photon-counting technique. This technique separates the Raman scattering from the four-photon scattering. In addition, the use of a pulsed pump eliminates Brillouin scattering and the use of a Sagnac loop rejects the pump photons that spectrally spread into the detection band due to self-phase-modulation.

© 2005 Optical Society of America

Full Article  |  PDF Article

Errata

Xiaoying Li, Paul Voss, Jun Chen, Kim Lee, and Prem Kumar, "Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings: erratum," Opt. Express 13, 3579-3580 (2005)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-9-3579

References

  • View by:
  • |

  1. R.W. Hellwarth, J. Cherlow, and T. Yang, �??Origin and frequency dependence of nonlinear optical susceptibilities of glasses,�?? Phys. Rev. B 11, 964�??967 (1975).
    [CrossRef]
  2. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. P. Ippen, �??Measurement of the Raman gain spectrum of optical fibers,�?? Opt. Lett. 20, 31�??33 (1995).
    [CrossRef] [PubMed]
  3. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, �??All fiber photon-pair source for quantum communications,�?? IEEE Photon. Technol. Lett. 14, 983�??985 (2002).
    [CrossRef]
  4. Dogariu, J. Y. Fang, and L. J.Wang, �??Correlated photon generation for quantum cryptography,�?? NEC Research and Development 44, 294�??296 (2003).
  5. X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,�?? Opt. Express 12, 3737�??3744 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-37.</a>
    [CrossRef] [PubMed]
  6. J. E. Sharping, J. Chen, X. Li, and P. Kumar, �??Quantum correlated twin photons from microstructured fibre,�?? Opt. Express 12, 3086-3094 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086.</a>
    [CrossRef] [PubMed]
  7. H. Takesue and K. Inoue, �??Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop,�?? Phys. Rev. A 70, 031802 (2004).
    [CrossRef]
  8. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth and P. S. J. Russell, �??Photonic crystal fiber source of correlated photon pairs,�?? Opt. Express 13, 534�??544 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534.</a>
    [CrossRef] [PubMed]
  9. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, �??Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,�?? Phy. Rev. Lett. 94, 053601 (2005). arXiv: quant-ph/0402191 .
    [CrossRef]
  10. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, �??Storage and long-distance distribution of telecom-band polarization entanglement generated in optical fiber,�?? To appear in Opt. Lett .
  11. P. L. Voss and P. Kumar, �??Raman-effect induced noise limits on �?(3) parametric amplifiers and wavelength converters,�?? J. Opt. B: Quantum Semiclass. Opt. 6, S762�??S770 (2004).
    [CrossRef]
  12. R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, �??Noise-figure limit of fiber optical parametric amplifiers and wavelength converters: experimental investigation,�?? Opt. Lett. 29, 2372�??2374 (2004).
    [CrossRef] [PubMed]
  13. N. R. Newbury and K. L. Corwin, �??Comparison of stimulated and spontaneous scattering measurements of the full wavelength dependence of the Raman gain spectrum,�?? Symposium on Optical Fiber Measurement, G. W. Day, D. L. Franzen, and P. A. Williams, eds., NIST Special Publication 988 7�??10 (2002).
  14. J. E. Sharping, M. Fiorentino, and P. Kumar, �??Observation of twin-beam-type quantum correlation in optical fiber,�?? Opt. Lett. 26, 367�??369 (2001).
    [CrossRef]
  15. D. B. Mortimore, �??Fiber loop reflectors,�?? J. Lightwave Technol. 6, 1217�??1224 (1988).
    [CrossRef]
  16. R. H. Stolen and M. A. Bosch, �??Low-frequency and low-temperature Raman scattering in silica fibers,�?? Phys. Rev. Lett. 48, 805�??808 (1982).
    [CrossRef]
  17. N. R. Newbury, �??Raman gain: pump-wavelength dependence in single-mode fiber,�?? Opt. Lett. 27, 1232�??1234 (2002).
    [CrossRef]
  18. N. R. Newbury, �??Pump-wavelength dependence of Raman gain in single-mode optical fibers,�?? J. Lightwave Technol. 21, 3364�??3373 (2003).
    [CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, �??All fiber photon-pair source for quantum communications,�?? IEEE Photon. Technol. Lett. 14, 983�??985 (2002).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. B: Quantum Semiclass. Opt. (1)

P. L. Voss and P. Kumar, �??Raman-effect induced noise limits on �?(3) parametric amplifiers and wavelength converters,�?? J. Opt. B: Quantum Semiclass. Opt. 6, S762�??S770 (2004).
[CrossRef]

NEC Research and Development (1)

Dogariu, J. Y. Fang, and L. J.Wang, �??Correlated photon generation for quantum cryptography,�?? NEC Research and Development 44, 294�??296 (2003).

NIST Special Publication (1)

N. R. Newbury and K. L. Corwin, �??Comparison of stimulated and spontaneous scattering measurements of the full wavelength dependence of the Raman gain spectrum,�?? Symposium on Optical Fiber Measurement, G. W. Day, D. L. Franzen, and P. A. Williams, eds., NIST Special Publication 988 7�??10 (2002).

Opt. Express (3)

Opt. Lett (1)

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, �??Storage and long-distance distribution of telecom-band polarization entanglement generated in optical fiber,�?? To appear in Opt. Lett .

Opt. Lett. (4)

Phy. Rev. Lett. (1)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, �??Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,�?? Phy. Rev. Lett. 94, 053601 (2005). arXiv: quant-ph/0402191 .
[CrossRef]

Phys. Rev. A (1)

H. Takesue and K. Inoue, �??Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop,�?? Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Phys. Rev. B (1)

R.W. Hellwarth, J. Cherlow, and T. Yang, �??Origin and frequency dependence of nonlinear optical susceptibilities of glasses,�?? Phys. Rev. B 11, 964�??967 (1975).
[CrossRef]

Phys. Rev. Lett. (1)

R. H. Stolen and M. A. Bosch, �??Low-frequency and low-temperature Raman scattering in silica fibers,�?? Phys. Rev. Lett. 48, 805�??808 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup; scattered Stokes and anti-Stokes photons emerging from the port labelled “Out” are detected. FPC, fiber polarization controller; FPBS, fiber polarization beam splitter; F, filter.

Fig. 2.
Fig. 2.

Fitting parameters s 1 and s 2 versus the detuning, Ω. Solid (hollow) squares-blue and solid (hollow) circles-pink are the fitting parameters s 1 and s 2, respectively, for co- (cross)-polarized photons relative to the pump polarization.

Fig. 3.
Fig. 3.

(a) Transmission spectrum of one channel in the CAWGSF. (b) Spectra of the leaked pump at the port labelled “Out” at pump levels of 0.22×108 photons/pulse (dark gray), 0.6×108 photons/pulse (gray), and 1.0×108 photons/pulse (black).

Fig. 4.
Fig. 4.

Detected photons at detunings of 0.28 THz (circles-black), 0.38 THz (triangles-green), 0.48 THz (squares-pink), and 0.68 THz (diamonds-blue), as a function of the injected pump photons for (a) scattered photons co-polarized with the pump and (b) scattered photons cross-polarized with the pump.

Fig. 5.
Fig. 5.

(a) Total detected photons at detuning 0.17 THz (black) and 0.47 THz (gray), respectively, as a function of the injected pump photons. Second-order polynomials, Na =s 1 Np +s 2 Np2 , are shown to fit the experimental data (dot-dashed line). The contributions of linear scattering, s 1 Np , (solid line) and quadratic scattering, s 2 Np2 , (dotted line) are plotted separately as well. (b) Detected photons cross-polarized with the pump at different detunings as a function of the injected pump photons. First-order polynomials, Na =s 1 Np , are shown to fit the experimental data (solid line).

Fig. 6.
Fig. 6.

(a) Fitting parameters of s 1 (squares) and s 2 (circles) versus detuning without the FPBS is the setup. (b) Fitting parameter s 1 co- (solid squares) and cross-polarized (hollow squares) with the pump versus detuning.

Fig. 7.
Fig. 7.

Measured Raman-gain spectra, co- (solid squares) and cross-polarized (hollow squares) with the pump, versus detuning. Insets: Curves fitted to the measured Raman gain for detunings up to 1 THz, where third-order polynomials, Rg (ωp ,Ω)=aΩ+bΩ2+cΩ3, are shown to fit the experimental data. Red (green) solid curve is the fit for co- (cross-) polarized Raman gain with a=0.019 (0.021), b=0.0043 (0.0020), and c=0.045 (0.029).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n s ( Ω ) = η · R g ( ω p , Ω ) · L eff · P · Δ f · ( 1 + n th )
n a ( Ω ) = η · R g ( ω p , Ω ) · L eff · P · Δ f · n th
L eff = ( 1 e { α ( ω p ) + α ( ω s ( a ) ) } L ) ( α ( ω p ) + α ( ω s ( a ) ) )

Metrics