Abstract

Simultaneous stimulated Raman scattering (SRS) and second harmonic generation (SHG) are demonstrated in periodically poled lithium niobate (PPLN). Using a simple single-pass geometry, conversion efficiencies of up to 12% and 19% were observed for the SRS and SHG processes respectively. By changing the PPLN period interacting with the photonic crystal fibre based pump source and varying the PPLN temperature, the SHG signal was measured to be tunable from λ=584 nm to λ=679 nm. The SRS output spectrum was measured at λ=1583 nm, with a spectral full-width at half-maximum of λ=85 nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.E. Myers and W.R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 331663–1672 (1997).
    [Crossref]
  2. D.W. Chen and K. Masters, “Continuous-wave 4.3-mu m intracavity difference frequency generation in an optical parametric oscillator,” Opt. Lett. 2625–27 (2001).
    [Crossref]
  3. W.R. Bosenberg, J.I. Alexander, L.E. Myers, and R.W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23207–209 (1998).
    [Crossref]
  4. M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched 2nd harmonic-generation-Tuning and tolerances,” IEEE J. Quantum Electron. 282631–2654 (1992).
    [Crossref]
  5. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. of Am. B. 142268–2294 (1997).
    [Crossref]
  6. F. Laurell, “Periodically poled materials for miniature light sources,” Opt. Mat. 11235–244 (1999).
    [Crossref]
  7. P.G. Zverev, T.T. Basiev, and A.M. Prokhorov, “Stimulated Raman scattering of laser radiation in Raman crystals,” Opt. Mat. 11335–352 (1999).
    [Crossref]
  8. V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” App. Phys. Lett. 82325–327 (2003).
    [Crossref]
  9. I. Jovanovic, J.R. Schmidt, and C.A. Ebbers, “Optical parametric chirped-pulse amplification in periodically poled KTiOPO4 at 1053 nm,” App. Phys. Lett. 834125–412 (2003).
    [Crossref]
  10. N.V. Sidorov, M.N. Palatnikov, K. Bormanis, and A. Sternberg, “Raman spectra and structural defects of lithium niobate crystals,” Ferroelectrics 285685–694 (2003).
    [Crossref]
  11. D.T. Reid DT, I.G. Cormack, W.J. Wadsworth, J.C. Knight, and PSJ Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49757–767 (2002).
    [Crossref]
  12. G.D. Boyd and D.A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. App. Phys. 393597–3639 (1968).
    [Crossref]
  13. I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan, and V.G. Lazaryan, “Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,” J. Optoelectron. Adv. Mat. 561–68 (2003)

2003 (4)

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” App. Phys. Lett. 82325–327 (2003).
[Crossref]

I. Jovanovic, J.R. Schmidt, and C.A. Ebbers, “Optical parametric chirped-pulse amplification in periodically poled KTiOPO4 at 1053 nm,” App. Phys. Lett. 834125–412 (2003).
[Crossref]

N.V. Sidorov, M.N. Palatnikov, K. Bormanis, and A. Sternberg, “Raman spectra and structural defects of lithium niobate crystals,” Ferroelectrics 285685–694 (2003).
[Crossref]

I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan, and V.G. Lazaryan, “Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,” J. Optoelectron. Adv. Mat. 561–68 (2003)

2002 (1)

D.T. Reid DT, I.G. Cormack, W.J. Wadsworth, J.C. Knight, and PSJ Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49757–767 (2002).
[Crossref]

2001 (1)

1999 (2)

F. Laurell, “Periodically poled materials for miniature light sources,” Opt. Mat. 11235–244 (1999).
[Crossref]

P.G. Zverev, T.T. Basiev, and A.M. Prokhorov, “Stimulated Raman scattering of laser radiation in Raman crystals,” Opt. Mat. 11335–352 (1999).
[Crossref]

1998 (1)

1997 (2)

L.E. Myers and W.R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 331663–1672 (1997).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. of Am. B. 142268–2294 (1997).
[Crossref]

1992 (1)

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched 2nd harmonic-generation-Tuning and tolerances,” IEEE J. Quantum Electron. 282631–2654 (1992).
[Crossref]

1968 (1)

G.D. Boyd and D.A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. App. Phys. 393597–3639 (1968).
[Crossref]

Alexander, J.I.

Basiev, T.T.

P.G. Zverev, T.T. Basiev, and A.M. Prokhorov, “Stimulated Raman scattering of laser radiation in Raman crystals,” Opt. Mat. 11335–352 (1999).
[Crossref]

Bormanis, K.

N.V. Sidorov, M.N. Palatnikov, K. Bormanis, and A. Sternberg, “Raman spectra and structural defects of lithium niobate crystals,” Ferroelectrics 285685–694 (2003).
[Crossref]

Bosenberg, W.R.

W.R. Bosenberg, J.I. Alexander, L.E. Myers, and R.W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23207–209 (1998).
[Crossref]

L.E. Myers and W.R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 331663–1672 (1997).
[Crossref]

Boyd, G.D.

G.D. Boyd and D.A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. App. Phys. 393597–3639 (1968).
[Crossref]

Butkus, R.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” App. Phys. Lett. 82325–327 (2003).
[Crossref]

Byer, R.L.

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched 2nd harmonic-generation-Tuning and tolerances,” IEEE J. Quantum Electron. 282631–2654 (1992).
[Crossref]

Chen, D.W.

Cormack, I.G.

D.T. Reid DT, I.G. Cormack, W.J. Wadsworth, J.C. Knight, and PSJ Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49757–767 (2002).
[Crossref]

Ebbers, C.A.

I. Jovanovic, J.R. Schmidt, and C.A. Ebbers, “Optical parametric chirped-pulse amplification in periodically poled KTiOPO4 at 1053 nm,” App. Phys. Lett. 834125–412 (2003).
[Crossref]

Fejer, M.M.

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched 2nd harmonic-generation-Tuning and tolerances,” IEEE J. Quantum Electron. 282631–2654 (1992).
[Crossref]

Fragemann, A.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” App. Phys. Lett. 82325–327 (2003).
[Crossref]

Ghambaryan, I.A.

I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan, and V.G. Lazaryan, “Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,” J. Optoelectron. Adv. Mat. 561–68 (2003)

Guo, R.

I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan, and V.G. Lazaryan, “Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,” J. Optoelectron. Adv. Mat. 561–68 (2003)

Hovsepyan, R.K.

I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan, and V.G. Lazaryan, “Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,” J. Optoelectron. Adv. Mat. 561–68 (2003)

Ito, R.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. of Am. B. 142268–2294 (1997).
[Crossref]

Jovanovic, I.

I. Jovanovic, J.R. Schmidt, and C.A. Ebbers, “Optical parametric chirped-pulse amplification in periodically poled KTiOPO4 at 1053 nm,” App. Phys. Lett. 834125–412 (2003).
[Crossref]

Jundt, D.H.

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched 2nd harmonic-generation-Tuning and tolerances,” IEEE J. Quantum Electron. 282631–2654 (1992).
[Crossref]

Kitamoto, A.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. of Am. B. 142268–2294 (1997).
[Crossref]

Kleinman, D.A.

G.D. Boyd and D.A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. App. Phys. 393597–3639 (1968).
[Crossref]

Knight, J.C.

D.T. Reid DT, I.G. Cormack, W.J. Wadsworth, J.C. Knight, and PSJ Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49757–767 (2002).
[Crossref]

Kondo, T.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. of Am. B. 142268–2294 (1997).
[Crossref]

Laurell, F.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” App. Phys. Lett. 82325–327 (2003).
[Crossref]

F. Laurell, “Periodically poled materials for miniature light sources,” Opt. Mat. 11235–244 (1999).
[Crossref]

Lazaryan, V.G.

I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan, and V.G. Lazaryan, “Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,” J. Optoelectron. Adv. Mat. 561–68 (2003)

Magel, G.A.

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched 2nd harmonic-generation-Tuning and tolerances,” IEEE J. Quantum Electron. 282631–2654 (1992).
[Crossref]

Masters, K.

Myers, L.E.

W.R. Bosenberg, J.I. Alexander, L.E. Myers, and R.W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23207–209 (1998).
[Crossref]

L.E. Myers and W.R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 331663–1672 (1997).
[Crossref]

Palatnikov, M.N.

N.V. Sidorov, M.N. Palatnikov, K. Bormanis, and A. Sternberg, “Raman spectra and structural defects of lithium niobate crystals,” Ferroelectrics 285685–694 (2003).
[Crossref]

Pasiskevicius, V.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” App. Phys. Lett. 82325–327 (2003).
[Crossref]

Piskarskas, A.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” App. Phys. Lett. 82325–327 (2003).
[Crossref]

Poghosyan, A.R.

I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan, and V.G. Lazaryan, “Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,” J. Optoelectron. Adv. Mat. 561–68 (2003)

Prokhorov, A.M.

P.G. Zverev, T.T. Basiev, and A.M. Prokhorov, “Stimulated Raman scattering of laser radiation in Raman crystals,” Opt. Mat. 11335–352 (1999).
[Crossref]

Reid DT, D.T.

D.T. Reid DT, I.G. Cormack, W.J. Wadsworth, J.C. Knight, and PSJ Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49757–767 (2002).
[Crossref]

Russell, PSJ

D.T. Reid DT, I.G. Cormack, W.J. Wadsworth, J.C. Knight, and PSJ Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49757–767 (2002).
[Crossref]

Schmidt, J.R.

I. Jovanovic, J.R. Schmidt, and C.A. Ebbers, “Optical parametric chirped-pulse amplification in periodically poled KTiOPO4 at 1053 nm,” App. Phys. Lett. 834125–412 (2003).
[Crossref]

Shirane, M.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. of Am. B. 142268–2294 (1997).
[Crossref]

Shoji, I.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. of Am. B. 142268–2294 (1997).
[Crossref]

Sidorov, N.V.

N.V. Sidorov, M.N. Palatnikov, K. Bormanis, and A. Sternberg, “Raman spectra and structural defects of lithium niobate crystals,” Ferroelectrics 285685–694 (2003).
[Crossref]

Smilgevicius, V.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” App. Phys. Lett. 82325–327 (2003).
[Crossref]

Sternberg, A.

N.V. Sidorov, M.N. Palatnikov, K. Bormanis, and A. Sternberg, “Raman spectra and structural defects of lithium niobate crystals,” Ferroelectrics 285685–694 (2003).
[Crossref]

Vardanyan, E.S.

I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan, and V.G. Lazaryan, “Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,” J. Optoelectron. Adv. Mat. 561–68 (2003)

Wadsworth, W.J.

D.T. Reid DT, I.G. Cormack, W.J. Wadsworth, J.C. Knight, and PSJ Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49757–767 (2002).
[Crossref]

Wallace, R.W.

Zverev, P.G.

P.G. Zverev, T.T. Basiev, and A.M. Prokhorov, “Stimulated Raman scattering of laser radiation in Raman crystals,” Opt. Mat. 11335–352 (1999).
[Crossref]

App. Phys. Lett. (2)

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” App. Phys. Lett. 82325–327 (2003).
[Crossref]

I. Jovanovic, J.R. Schmidt, and C.A. Ebbers, “Optical parametric chirped-pulse amplification in periodically poled KTiOPO4 at 1053 nm,” App. Phys. Lett. 834125–412 (2003).
[Crossref]

Ferroelectrics (1)

N.V. Sidorov, M.N. Palatnikov, K. Bormanis, and A. Sternberg, “Raman spectra and structural defects of lithium niobate crystals,” Ferroelectrics 285685–694 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, “Quasi-phase-matched 2nd harmonic-generation-Tuning and tolerances,” IEEE J. Quantum Electron. 282631–2654 (1992).
[Crossref]

L.E. Myers and W.R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 331663–1672 (1997).
[Crossref]

J. App. Phys. (1)

G.D. Boyd and D.A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. App. Phys. 393597–3639 (1968).
[Crossref]

J. Mod. Opt. (1)

D.T. Reid DT, I.G. Cormack, W.J. Wadsworth, J.C. Knight, and PSJ Russell, “Soliton self-frequency shift effects in photonic crystal fibre,” J. Mod. Opt. 49757–767 (2002).
[Crossref]

J. Opt. Soc. of Am. B. (1)

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. of Am. B. 142268–2294 (1997).
[Crossref]

J. Optoelectron. Adv. Mat. (1)

I.A. Ghambaryan, R. Guo, R.K. Hovsepyan, A.R. Poghosyan, E.S. Vardanyan, and V.G. Lazaryan, “Periodically poled structures in lithium niobate crystals: Growth and photoelectric properties,” J. Optoelectron. Adv. Mat. 561–68 (2003)

Opt. Lett. (2)

Opt. Mat. (2)

F. Laurell, “Periodically poled materials for miniature light sources,” Opt. Mat. 11235–244 (1999).
[Crossref]

P.G. Zverev, T.T. Basiev, and A.M. Prokhorov, “Stimulated Raman scattering of laser radiation in Raman crystals,” Opt. Mat. 11335–352 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up. The output of a continuous wave mode-locked Nd3+:YLF laser was sent through a half-wave plate into photonic crystal fiber (PCF) using an aspheric lens (A) of focal length f=+8 mm. The fibre output was collimated using another aspheric lens (B) of focal length f=+4.5 mm. Using a spherical lens (C) of focal length f=+40mm, the soliton self-frequency shifted output and the residual pump light was focused into a 6.5 mm long PPLN crystal.

Fig. 2.
Fig. 2.

By rotating the half-wave plate prior to the PCF, a weak polarization dependence of the pump polarization on the SSFS power was observed, with a measured decrease in average power of up to 24%.

Fig. 3.
Fig. 3.

The SSFS optical spectrum transmitted by the PCF (±1 nm wavelength accuracy, linear scale). The pump laser is evident as a small peak at 1047 nm. The SSFS maximum was measured at 1258 nm.

Fig. 4.
Fig. 4.

Two-photon autocorrelation of the SSFS PCF output. The FWHM of the measured pulse was 220 fs. Assuming a sech2 pulse shape, this corresponded to a pulse width of approximately 140 fs.

Fig. 5.
Fig. 5.

The SHG spectra as measured at the PPLN output, where the PPLN crystal was held at a fixed temperature of 110 °C. The legend refers to the period length chosen to interact with the input SSFS radiation. The bandwidth of the SHG output varies from 2.8 nm to 4.2 nm.

Fig. 6.
Fig. 6.

The SRS spectrum resulting from pumping the PPLN with the SSFS source. The spectral peak was measured at λ=1583 nm, with a λ=85 nm FWHM.

Metrics