Abstract

We report on waveguide writing in fused silica with a novel commercial femtosecond fiber laser system (IMRA America, FCPA µJewel). The influence of a range of laser parameters were investigated in these initial experiments, including repetition rate, focal area, pulse energy, scan speed, and wavelength. Notably, it was not possible to produce low-loss waveguides when writing with the fundamental wavelength of 1045 nm. However, it was possible to fabricate telecom-compatible waveguides at the second harmonic wavelength of 522 nm. High quality waveguides with propagation losses below 1 dB/cm at 1550 nm were produced with 115 nJ/pulse at 1 MHz and 522 nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N.F. Borrelli, C. Smith, D.C. Allan, and T.P. Seward III, �??Densification of fused silica under 193 nm excitation,�?? J. Opt. Soc. Am. B. 14, 1606-1615 (1997).
    [CrossRef]
  2. N.F. Borrelli, C. Smith, and D.C. Allan, �??Excimer-laser-induced densification in binary silicate glasses,�?? Opt. Lett. 24, 1401-1403 (1999).
    [CrossRef]
  3. D. Coric, P.R. Herman, K.P. Chen, M.X. Wei, P.B. Corkum, R. Bhardwaj, and D.M. Rayner, �??Contrasts in writing photonic structures with ultrafast and ultraviolet lasers,�?? in Optical Devices for Fiber Communication III, M. J. F. Digonnet, ed., Proc. SPIE 4638, 77-84 (2002).
  4. C. Valdivia, X. Midori Wei, D. Coric, P.R. Herman, �??F2 laser-induced visible- and infrared-confining buried waveguides in fused silica,�?? Conference on Lasers and Electro Optics 2003, CWI4.
  5. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  6. M. Will, S. Nolte, and A. Tunnermann, �??Single- and multimode waveguides in glasses manufactured with femtosecond laser pulses,�?? in Commercial and Biomedical Applications of Ultrafast and Free-Electron Lasers, G. S. Edwards, J. Neev, A. Ostendorf, J. C. Sutherland, eds., Proc. SPIE 4633, 99-106 (2002).
  7. D. Homoelle, S. Wielandy, A.L. Gaeta, N.F. Borrelli, and C. Smith, �??Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,�?? Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  8. K. Minoshima, A.W. Kowalevicz, I. Hartl, E.P. Ippen, and J.G. Fujimoto, �??Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,�?? Opt. Lett. 26, 1516-1518 (2001).
    [CrossRef]
  9. A.M. Streltsov and N.F. Borrelli, �??Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,�?? Opt. Lett. 26, 42-43 (2001).
    [CrossRef]
  10. C.B. Schaffer, J.F. Garcia, and E. Mazur, �??Bulk heating of transparent materials using a high-repetition rate femtosecond laser,�?? Appl. Phys. A. 76, 351-354 (2003).
    [CrossRef]
  11. A.M. Streltsov and N.F. Borrelli, �??Study of femtosecond-laser-written waveguides in glasses,�?? J.Opt. Soc. Am. B. 19, 2496-2504 (2002).
    [CrossRef]
  12. Y. Sikorski, A.A. Said, P. Bado, R. Maynard, C. Florea, and K. Winick, �??Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,�?? Electron. Lett. 36, 226-227 (2000).
    [CrossRef]
  13. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, �??Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,�?? Opt. Lett. 29, 2626-2628 (2004).
    [CrossRef] [PubMed]
  14. Y. Kondo, K, Nouchi, T. Mitsuyu, M. Watanabe, P.G. Kazansky, and K. Hirao, �??Fabrication of long-period fiber, gratings by focused irradiation of infrared femtosecond laser pulses,�?? Opt. Lett. 24, 646-648 (1999).
    [CrossRef]
  15. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, �??Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,�?? Opt. Comm. 171, 279-284 (1999).
    [CrossRef]
  16. K. Minoshima, A.M. Kowalevicz, E.P. Ippen, and J.G. Fujimoto, �??Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,�?? Opt. Express 10, 645-652 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-645.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-645</a>
    [PubMed]
  17. P.R. Herman, R.S Marjoribanks, A. Oettl, Burst-ultrafast laser machining method, US Patent (6,552,301 B2)
  18. M. Will, J. Burghoff, J. Limpert, T. Schreiber, H. Zellmer, S. Nolte, and A. Tunnermann, �??Generation of photoinduced waveguides using a high repetition rate fiber CPA system,�?? Conference on Lasers and Electro Optics 2003, CWI6.
  19. M. Will, J. Burghoff, J. Limpert, T. Schreiber, S. Nolte, and A. Tunnermann, �??High speed fabrication of optical waveguides inside glasses using a high rep.-rate fiber CPA system,�?? in Photon Processing in Micorelectronics and Photonics III, P.R. Herman, J. Fieret, A. Pique, T. Okada, F.G. Bachmann, W. Hoving, K. Washio, X. Xu, J.J. Dubowski, D.B. Geohegan, F. Trager, eds., Proc. SPIE 5339, 168-173 (2004).
  20. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, �??Improvement on asymmetry of low-loss waveguides written in pure silica glass by femtosecond laser pulses,�?? in Optical Fibers and Passive Components, S. Shen, S. Jian, K. Okamoto, K. L. Walker, eds., Proc. SPIE 5279, 21-28 (2004).
  21. S. Eaton, F. Yoshino, L. Shah, A. Arai, H. Zhang, S. Ho, and P. Herman, �??Thermal heating effects in writing optical waveguides with a 0.1 - 5 MHz rate ultrafast fiber laser,�?? in Photonics West 2005, Proc. SPIE 5713A-7 (2005).

Appl. Phys. A.

C.B. Schaffer, J.F. Garcia, and E. Mazur, �??Bulk heating of transparent materials using a high-repetition rate femtosecond laser,�?? Appl. Phys. A. 76, 351-354 (2003).
[CrossRef]

Appl. Phys. Lett.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Conference on Lasers and Electro Optics

C. Valdivia, X. Midori Wei, D. Coric, P.R. Herman, �??F2 laser-induced visible- and infrared-confining buried waveguides in fused silica,�?? Conference on Lasers and Electro Optics 2003, CWI4.

M. Will, J. Burghoff, J. Limpert, T. Schreiber, H. Zellmer, S. Nolte, and A. Tunnermann, �??Generation of photoinduced waveguides using a high repetition rate fiber CPA system,�?? Conference on Lasers and Electro Optics 2003, CWI6.

Electron. Lett.

Y. Sikorski, A.A. Said, P. Bado, R. Maynard, C. Florea, and K. Winick, �??Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,�?? Electron. Lett. 36, 226-227 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J.Opt. Soc. Am. B.

A.M. Streltsov and N.F. Borrelli, �??Study of femtosecond-laser-written waveguides in glasses,�?? J.Opt. Soc. Am. B. 19, 2496-2504 (2002).
[CrossRef]

Opt. Comm.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, �??Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,�?? Opt. Comm. 171, 279-284 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

M. Will, J. Burghoff, J. Limpert, T. Schreiber, S. Nolte, and A. Tunnermann, �??High speed fabrication of optical waveguides inside glasses using a high rep.-rate fiber CPA system,�?? in Photon Processing in Micorelectronics and Photonics III, P.R. Herman, J. Fieret, A. Pique, T. Okada, F.G. Bachmann, W. Hoving, K. Washio, X. Xu, J.J. Dubowski, D.B. Geohegan, F. Trager, eds., Proc. SPIE 5339, 168-173 (2004).

T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, �??Improvement on asymmetry of low-loss waveguides written in pure silica glass by femtosecond laser pulses,�?? in Optical Fibers and Passive Components, S. Shen, S. Jian, K. Okamoto, K. L. Walker, eds., Proc. SPIE 5279, 21-28 (2004).

S. Eaton, F. Yoshino, L. Shah, A. Arai, H. Zhang, S. Ho, and P. Herman, �??Thermal heating effects in writing optical waveguides with a 0.1 - 5 MHz rate ultrafast fiber laser,�?? in Photonics West 2005, Proc. SPIE 5713A-7 (2005).

D. Coric, P.R. Herman, K.P. Chen, M.X. Wei, P.B. Corkum, R. Bhardwaj, and D.M. Rayner, �??Contrasts in writing photonic structures with ultrafast and ultraviolet lasers,�?? in Optical Devices for Fiber Communication III, M. J. F. Digonnet, ed., Proc. SPIE 4638, 77-84 (2002).

M. Will, S. Nolte, and A. Tunnermann, �??Single- and multimode waveguides in glasses manufactured with femtosecond laser pulses,�?? in Commercial and Biomedical Applications of Ultrafast and Free-Electron Lasers, G. S. Edwards, J. Neev, A. Ostendorf, J. C. Sutherland, eds., Proc. SPIE 4633, 99-106 (2002).

Other

P.R. Herman, R.S Marjoribanks, A. Oettl, Burst-ultrafast laser machining method, US Patent (6,552,301 B2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic arrangement for ultrafast laser writing of buried waveguides: TM — turning mirror; HWP - λ/2 waveplate at 1064 nm; L1 - 150 mm focal length lens; L2 - 100 mm focal length lens; PBS - polarizing beam splitter; ND - variable neutral density filter; TM - 1064 nm and 532 nm 45° turning mirror.

Fig. 2.
Fig. 2.

Optical microscope image of waveguides written in fused silica with 522-nm wavelength.

Fig. 3.
Fig. 3.

Near-field mode profiles of 522-nm laser-written waveguides (115 nJ/pulse). Scan speed and MFD are indicated. The writing beam was incident from the right.

Fig. 4.
Fig. 4.

Plot of insertion loss vs. sample lengths for waveguide written at different scan speeds. Linear fit equations give propagation loss in dB/cm (slope) and coupling loss in dB (y-intercept).

Tables (1)

Tables Icon

Table 1. Laser exposure conditions tested for waveguide writing in fused silica

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NF = 2 w 0 F p R v s

Metrics