Abstract

In this paper we describe a new modulation scheme using stimulated Raman scattering in conjunction with a reverse biased p-i-n diode embedded in a silicon waveguide. We show optical modulation of a weak probe beam by modulating the reverse bias voltage of the silicon waveguide excited by a strong pump beam. The probe beam modulation is due to the two-photon absorption-induced carrier density modulation in the waveguide. By tuning the probe wavelength to the Stokes wavelength, we demonstrate for the first time a lossless optical modulator in silicon with modulation speeds up to 80-MHz.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. A. Soref and B. R. Bennett, �??Electro-optical effects in Silicon,�?? IEEE J. Quant. Elec. QE-23, 123-129 (1987).
    [CrossRef]
  2. S. T. Feng and E. A. Irene, �??Thermo-optical switching in Si based etalons,�?? J. Appl. Phys. 72, 3897-3903 (1992).
    [CrossRef]
  3. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-Verlag, New York, 2004).
  4. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).
  5. R. A. Soref, and P. J. Lorenzo, �??All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm.,�?? IEEE J. Quant. Electron. QE-22, 873�??879 (1986).
    [CrossRef]
  6. C. K. Tang, and G. T. Reed, �??Highly efficient optical phase modulator in SOI waveguides,�?? Elect. Lett. 31, 451�??452 (1995).
    [CrossRef]
  7. A. Irace, G. Breglio, and A. Cutolo, �??All-silicon optoelectronic modulator with 1 GHz switching capability,�?? Electron. Lett. 39, 232�??233 (2003).
    [CrossRef]
  8. C. K. Tang, and G. T. Reed, �??Highly efficient optical phase modulator in SOI waveguides,�?? Elect. Lett. 31, 451�??452 (1995).
    [CrossRef]
  9. P. Dainesi, A.Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, P. Robert, �??CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,�?? IEEE Photon. Technol. Lett. 12, 660�??662 (2000).
    [CrossRef]
  10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, �??A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,�?? Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  11. U. Fischer, T. Zinke, B. Schuppert and K. Petermann, �??Single mode optical switches based on SOI waveguides with large cross-section,�?? Elect Lett. 30, 406-407 (1994).
    [CrossRef]
  12. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, �??Sub us switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,�?? IEEE Phot. Tech. Lett. 16, 2039�??2041 (2004).
    [CrossRef]
  13. O. Boyraz and B. Jalali, �??Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,�?? IEICE Elect. Express 1, 429-434 (2004).
    [CrossRef]
  14. T. K. Liang and H. K. Tsang, �??Efficient Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 85, 3343-3345 (2004).
    [CrossRef]
  15. Richard Jones, Haisheng Rong, Ansheng Liu, Alexander W. Fang, Mario J. Paniccia, Dani Hak, Oded Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,�?? Opt. Exp. 13, 519-525 (2005). <a href="http://www.opticsinfobase.org/ViewMedia.cfm?id=82390&seq=0">http://www.opticsinfobase.org/ViewMedia.cfm?id=82390&seq=0</a>.
    [CrossRef]
  16. O. Boyraz and B. Jalali, �??Demonstration of a silicon Raman laser,�?? Opt. Express 12, 5269-5273 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269</a>.
    [CrossRef] [PubMed]
  17. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, �??An all-silicon Raman laser,�?? Nature 433, 292-294 (2005).
    [CrossRef] [PubMed]
  18. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Influence of nonlinear absorption on Raman amplification in Silicon waveguides,�?? Opt. Express 12, 2774-2780 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774</a>.
    [CrossRef] [PubMed]
  19. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, �??Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,�?? Appl. Phys. Lett. 85, 2196-2198 (2004).
    [CrossRef]
  20. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002).
    [CrossRef]
  21. Q. Xu, V. R. Almeida, and M. Lipson, �??Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,�?? Opt. Express 12, 4437-4442 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437</a>.
    [CrossRef] [PubMed]
  22. O. Boyraz and B. Jalali, "Demonstration of directly modulated silicon Raman laser," Opt. Express 13, 796-800 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-796">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-796</a>.
    [CrossRef] [PubMed]
  23. Details are available at <a href="http://www.photond.com">http://www.photond.com</a>.
  24. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, �??Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,�?? Opt. Express 12, 4261-4268 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261</a>.
    [CrossRef] [PubMed]
  25. G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).
  26. I. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnstone, S. Day, J. Luff, H. K. Tsang and M. Asgari, "Tapered silicon waveguides for low insertion loss highly efficient high speed electronic variable attenuators," IEEE OFC, March 24-27, 2003.

Appl. Phys. Lett.

T. K. Liang and H. K. Tsang, �??Efficient Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 85, 3343-3345 (2004).
[CrossRef]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, �??Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,�?? Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Elect Lett.

U. Fischer, T. Zinke, B. Schuppert and K. Petermann, �??Single mode optical switches based on SOI waveguides with large cross-section,�?? Elect Lett. 30, 406-407 (1994).
[CrossRef]

Elect. Lett.

C. K. Tang, and G. T. Reed, �??Highly efficient optical phase modulator in SOI waveguides,�?? Elect. Lett. 31, 451�??452 (1995).
[CrossRef]

C. K. Tang, and G. T. Reed, �??Highly efficient optical phase modulator in SOI waveguides,�?? Elect. Lett. 31, 451�??452 (1995).
[CrossRef]

Electron. Lett.

A. Irace, G. Breglio, and A. Cutolo, �??All-silicon optoelectronic modulator with 1 GHz switching capability,�?? Electron. Lett. 39, 232�??233 (2003).
[CrossRef]

IEEE J. Quant. Elec.

R. A. Soref and B. R. Bennett, �??Electro-optical effects in Silicon,�?? IEEE J. Quant. Elec. QE-23, 123-129 (1987).
[CrossRef]

IEEE J. Quant. Electron.

R. A. Soref, and P. J. Lorenzo, �??All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm.,�?? IEEE J. Quant. Electron. QE-22, 873�??879 (1986).
[CrossRef]

IEEE OFC

I. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnstone, S. Day, J. Luff, H. K. Tsang and M. Asgari, "Tapered silicon waveguides for low insertion loss highly efficient high speed electronic variable attenuators," IEEE OFC, March 24-27, 2003.

IEEE Phot. Tech. Lett.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, �??Sub us switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,�?? IEEE Phot. Tech. Lett. 16, 2039�??2041 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Dainesi, A.Kung, M. Chabloz, A. Lagos, P. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, P. Renaud, P. Robert, �??CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,�?? IEEE Photon. Technol. Lett. 12, 660�??662 (2000).
[CrossRef]

IEICE Elect. Express

O. Boyraz and B. Jalali, �??Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,�?? IEICE Elect. Express 1, 429-434 (2004).
[CrossRef]

J. Appl. Phys.

S. T. Feng and E. A. Irene, �??Thermo-optical switching in Si based etalons,�?? J. Appl. Phys. 72, 3897-3903 (1992).
[CrossRef]

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, �??A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,�?? Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, �??An all-silicon Raman laser,�?? Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Opt. Exp.

Richard Jones, Haisheng Rong, Ansheng Liu, Alexander W. Fang, Mario J. Paniccia, Dani Hak, Oded Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,�?? Opt. Exp. 13, 519-525 (2005). <a href="http://www.opticsinfobase.org/ViewMedia.cfm?id=82390&seq=0">http://www.opticsinfobase.org/ViewMedia.cfm?id=82390&seq=0</a>.
[CrossRef]

Opt. Express

O. Boyraz and B. Jalali, �??Demonstration of a silicon Raman laser,�?? Opt. Express 12, 5269-5273 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269</a>.
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, �??Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,�?? Opt. Express 12, 4437-4442 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437</a>.
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of directly modulated silicon Raman laser," Opt. Express 13, 796-800 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-796">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-796</a>.
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Influence of nonlinear absorption on Raman amplification in Silicon waveguides,�?? Opt. Express 12, 2774-2780 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774</a>.
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, �??Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,�?? Opt. Express 12, 4261-4268 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261</a>.
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).

Details are available at <a href="http://www.photond.com">http://www.photond.com</a>.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-Verlag, New York, 2004).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1. (a)
Fig. 1. (a)

Schematic diagram of the SOI p-i-n waveguide used in our experiment.

Fig. 1. (b)
Fig. 1. (b)

SEM image of the SOI p-i-n waveguide used in our experiment.

Fig. 2.
Fig. 2.

Experimental setup used to make the gain measurement. DUT is device under test, TEC is thermo-electric cooler

Fig. 3.
Fig. 3.

Net Raman gain as a function of reverse bias for different pump powers coupled into the silicon waveguide, error bars display the standard deviation

Fig. 4.
Fig. 4.

Modeled carrier density in our silicon waveguide device at different pump powers as a function of bias voltage

Fig. 5.
Fig. 5.

Demonstration of lossless silicon modulator for a pump power of 954-mW inside our device and 10-MHz square wave drive voltage

Fig. 6. (a)
Fig. 6. (a)

The on-chip voltage and optical modulation as a function of frequency for a pump power of 579-mW inside a d=6-um waveguide; error bars display the standard deviation

Fig. 6. (b)
Fig. 6. (b)

Normalized frequency plot for a pump power of 579-mW inside a d=6-um S-bend waveguide

Tables (1)

Tables Icon

Table 1. DC current, Transmission loss, Modulation depth and 3-dB Bandwidth for this silicon modulator for various pump powers and drive voltages

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G = 10 log P s ( L ) P s ( 0 )
ζ = β 2 h ν P 2 A eff 2

Metrics