Abstract

An external cavity laser has been designed for rapid but stable wavelength-tuning. To enhance the tuning stability, cavity modes are suppressed by rapidly changing the cavity length as part of the wavelength-scanning mechanism. The ~27 cm cavity length is modulated at speeds up to 1190 m/s, corresponding to ~90% of one wavelength in an optical round-trip time. The laser scans from 1370–1464 nm and back at a rate of 15.5 kHz with a measured instantaneous linewidth of ~0.3 nm. This high speed modeless laser has several advantages over traditional designs which will be discussed here.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Wippich, M., Dessau, K.L., �??Tunable lasers enhance fiber sensors,�?? Laser Focus World 39, 89-94 (2003).
  2. Kranendonk, L.A., Walewski, J.W., Tongwoo, K., and Sanders, S.T., �??Wavelength- gile sensor applied for HCCI engine measurements,�?? in Proceedings of 30th International Symposium on Combustion, (Elsevier, Chicago, IL, 2004), pp. 1619-1627.
  3. Yun, S.H., Tearney, J.F., de Boer, J.F., Iftimia, N., and Bouma, B.E., �??High-speed optical frequency-domain imaging,�?? Opt Express 11, 2953-2963 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>
  4. Yun, S.H., Boudoux, C., Tearney, G.J., and Bouma, B.E., �??High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,�?? Opt. Lett. 28, 1981-1983 (2003).
  5. Pilgrim, J.S, �??Wavelength agile external cavity diode laser for trace gas detection,�?? Trends Opt. Photonics 69, (2002).
  6. Lim, M.J., Sukenik, C.I., Stievater, T.H., Bucksbaum, P.H., and Conti, R.S., �??Improved design of a frequency-shifted feedback diode laser for optical pumping at high magnetic field,�?? Opt. Commun. 147, 99-102 (1998).
  7. Yoshizawa, A., and Tsuchida, H., �??Chirped-comb generation in frequency-shifted feedback laser diodes with a large frequency shift,�?? Opt. Commun. 155, 51-54 (1998).
  8. Kranendonk, L.A., Caswell, A.W., Myers, A.M., Sanders, S.T., �??Wavelength-agile laser sensors for measuring gas properties in engines,�?? SAE Paper 2003-01-1116.
  9. Wang, J., Sanders, S.T., Jeffries, J.B., Hanson, R.K., �??Oxygen measurements at high pressures using vertical cavity surface-emitting lasers,�?? Appl. Phys. B 72, 865 (2001).
  10. Rothman, L.S., Jacquemart, D., Barbe, A., Benner, D.C., Birk, M., Brown, L.R., Carleer, M.R., Chackerian, Jr, C., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Flaud, J.M., Gamache, R.R., Goldman, A., Hartmann, J.M., Jucks, K.W., Maki, A.G., Mandin, J.Y., Massie, S.T., Orphal, J., Perrin, A., Rinsland, C.P., Smith, M.A.H., Tennyson, J., Tolchenov, R.N., Toth, R.A., Vander Auwera, J., Varanasi, P., Wagner, G., �??The HITRAN 2004 Molecular Spectroscopic Database,�?? J. Quant. Spectrosc. Radiat. Transfer (to be published).
  11. Walewski, J.W., Sanders, S.T., �??High-resolution wavelength-agile laser source based on pulsed super-continua,�?? Appl. Phys. B 79, 415-418 (2004).
  12. Sanders, S.T., �??Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,�?? Appl. Phys. B 75, 799-802 (2002).

30th Intl. Symposium on Combustion (1)

Kranendonk, L.A., Walewski, J.W., Tongwoo, K., and Sanders, S.T., �??Wavelength- gile sensor applied for HCCI engine measurements,�?? in Proceedings of 30th International Symposium on Combustion, (Elsevier, Chicago, IL, 2004), pp. 1619-1627.

Appl. Phys. B (3)

Walewski, J.W., Sanders, S.T., �??High-resolution wavelength-agile laser source based on pulsed super-continua,�?? Appl. Phys. B 79, 415-418 (2004).

Sanders, S.T., �??Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,�?? Appl. Phys. B 75, 799-802 (2002).

Wang, J., Sanders, S.T., Jeffries, J.B., Hanson, R.K., �??Oxygen measurements at high pressures using vertical cavity surface-emitting lasers,�?? Appl. Phys. B 72, 865 (2001).

J. Quant. Spectrosc. Radiat. Transfer (1)

Rothman, L.S., Jacquemart, D., Barbe, A., Benner, D.C., Birk, M., Brown, L.R., Carleer, M.R., Chackerian, Jr, C., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Flaud, J.M., Gamache, R.R., Goldman, A., Hartmann, J.M., Jucks, K.W., Maki, A.G., Mandin, J.Y., Massie, S.T., Orphal, J., Perrin, A., Rinsland, C.P., Smith, M.A.H., Tennyson, J., Tolchenov, R.N., Toth, R.A., Vander Auwera, J., Varanasi, P., Wagner, G., �??The HITRAN 2004 Molecular Spectroscopic Database,�?? J. Quant. Spectrosc. Radiat. Transfer (to be published).

Laser Focus World (1)

Wippich, M., Dessau, K.L., �??Tunable lasers enhance fiber sensors,�?? Laser Focus World 39, 89-94 (2003).

Opt Express (1)

Yun, S.H., Tearney, J.F., de Boer, J.F., Iftimia, N., and Bouma, B.E., �??High-speed optical frequency-domain imaging,�?? Opt Express 11, 2953-2963 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>

Opt. Commun. (2)

Lim, M.J., Sukenik, C.I., Stievater, T.H., Bucksbaum, P.H., and Conti, R.S., �??Improved design of a frequency-shifted feedback diode laser for optical pumping at high magnetic field,�?? Opt. Commun. 147, 99-102 (1998).

Yoshizawa, A., and Tsuchida, H., �??Chirped-comb generation in frequency-shifted feedback laser diodes with a large frequency shift,�?? Opt. Commun. 155, 51-54 (1998).

Opt. Lett. (1)

Trends Opt. Photonics (1)

Pilgrim, J.S, �??Wavelength agile external cavity diode laser for trace gas detection,�?? Trends Opt. Photonics 69, (2002).

Other (1)

Kranendonk, L.A., Caswell, A.W., Myers, A.M., Sanders, S.T., �??Wavelength-agile laser sensors for measuring gas properties in engines,�?? SAE Paper 2003-01-1116.

Supplementary Material (2)

» Media 1: AVI (411 KB)     
» Media 2: AVI (765 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(0.411 MB)..Movie of the new single pass wavelength agile, modeless, external cavity diode laser described in this paper. The animation includes instantaneous cavity speed (V), change in cavity length in an optical round trip (ΔL), spectral resolution, and wavelength (λ) values using a 1200 grooves/mm grating.

Fig. 2.
Fig. 2.

(0.765 MB)..Movie of a novel double pass external cavity diode laser design with instantaneous cavity speed (V), change in cavity length in an optical round trip (ΔL), spectral resolution, wavelength (λ), and total path length using a 1050 grooves/mm grating.

Fig. 3.
Fig. 3.

- Elimination of cavity modes. The bottom panel is the laser signal as set up for Fig. 1 (λ 1-λ 2 is 1370–1464 nm). The middle panel shows a slower mirror oscillation, with λ12=1398-1441 nm. Finally, the top panel shows a very slow change in cavity length, and the cavity mode effect (λ 1-λ 2=1418.5-1419.5). Corresponding Vmax , ΔLmax and Rmax values are given.

Fig. 4.
Fig. 4.

- Raw data signals taken from a high pressure (7 bar) cell at room temperature. I is the signal recorded after the cell, and Io is the signal directly out of the laser. A fiber splitter was used to record I and Io simultaneously.

Fig. 5.
Fig. 5.

- A sample water spectrum measured in a high pressure cell at room temperature. The top panel shows the corresponding spectrum generated from the HITEMP database.

Tables (1)

Tables Icon

Table 1. Results from computer simulations., where single pass geometry is shown in Fig. 1, and double pass is shown in Fig. 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R = Δ f F S R
Δ f = V c f = V λ = Δ L τ λ = Δ L · c 2 L λ
R = Δ f F S R = Δ L c 2 L λ c 2 L = Δ L λ

Metrics