Abstract

We report a novel and efficient method for the laser direct writing of two-dimensional silver structures. Multiphoton absorption of a small fraction of the output of a Ti:sapphire oscillator is sufficient to photoreduce silver nitrate in a thin film of polyvinylpyrrolidone that has been spin-coated on a substrate. The polymer can then be washed away, leaving a pattern consisting of highly interconnected silver nanoparticles. We report the characterization of the silver patterns using scanning electron and atomic force microscopies, and demonstrate the application of this technique in the creation of diffraction gratings.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. B. Sun and S. Kawata, "Two-Photon Laser Precision Microfabrication and Its Applications to Micro-Nano Devices and Systems," J. Lightwave Tech. 21, 624-633 (2003).
    [CrossRef]
  2. T. Baldacchini and J. T. Fourkas, "Three-Dimensional Nanofabrication Using Multiphoton Absorption," in Encyclopedia of Nanoscience and Nanotechnology, J. A. Schwarz, C. I. Contescu, and K. Putyera, eds. (Marcel Dekker, New York, 2004), pp. 3905-3915.
  3. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, "Single-Shot, Two-Photon Exposure of Commercial Photoresist for the Production of Three-Dimensional Structures," Opt. Lett. 23, 1745-1747 (1998).
    [CrossRef]
  4. P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, "3-Dimensional Submicron Polymerization of Acrylamide by Multiphoton Excitation of Xanthene Dyes," Macromol. 33, 1511-1513 (2000).
    [CrossRef]
  5. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-Photon Polymerization Initiators for Three-Dimensional Optical Data Storage and Microfabrication," Nature 398, 51-54 (1999).
    [CrossRef]
  6. K. D. Belfield, X. Ren, E. W. Van Stryland, D. J. Hagan, V. Dubikovsky, and E. J. Miesak, "Near-IR Two-Photon Photoinitiated Polymerization Using a Fluorone/Amine Initiating System," J. Amer. Chem. Soc. 122, 1217-1218 (2000).
    [CrossRef]
  7. S. Maruo, O. Nakamura, and S. Kawata, "Three-Dimensional Microfabrication with Two-Photon-Absorbed Photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  8. T. Baldacchini, C. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, "Acrylic-Based Resin with Favorable Properties for Three-Dimensional Two-Photon Polymerization," J. Appl. Phys. 95, 6072-6076 (2004).
    [CrossRef]
  9. P.-W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, "Two-Photon Photographic Production of Three-Dimensional Metallic Structures within a Dielectric Matrix," Adv. Mater. 12, 1438-1441 (2000).
    [CrossRef]
  10. F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, "Laser and Electron-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning," Adv. Mater. 14, 194-+ (2002).
    [CrossRef]
  11. O. L. A. Monti, J. T. Fourkas, and D. J. Nesbitt, "Diffraction-Limited Photogeneration and Characterization of Silver Nanoparticles," J. Phys. Chem. B 108, 1604-1612 (2004).
    [CrossRef]
  12. K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, "Two-Photon Photoreduction of Metallic Nanoparticle Gratings in a Polymer Matrix," Appl. Phys. Lett. 83, 1426-1428 (2003).
    [CrossRef]
  13. A. Auerbach, "On Depositing Conductors from Solution with a Laser," J. Electrochem. Soc. 132, 130-132 (1985).
    [CrossRef]
  14. A. Auerbach, "Method for Reducing Metal-Salts Complexed in a Polymer Host with a Laser," J. Electrochem. Soc. 132, 1437-1440 (1985).
    [CrossRef]
  15. B. Arkles, "Tailoring Surfaces with Silanes," Chemtech 7, 766 (1977).
  16. L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, "Photoactivated Fluorescence from Individual Silver Nanoclusters," Science 291, 103-106 (2001).
    [CrossRef] [PubMed]

Adv. Mater. (2)

P.-W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, "Two-Photon Photographic Production of Three-Dimensional Metallic Structures within a Dielectric Matrix," Adv. Mater. 12, 1438-1441 (2000).
[CrossRef]

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, and J. W. Perry, "Laser and Electron-Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning," Adv. Mater. 14, 194-+ (2002).
[CrossRef]

Appl. Phys. Lett. (1)

K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, "Two-Photon Photoreduction of Metallic Nanoparticle Gratings in a Polymer Matrix," Appl. Phys. Lett. 83, 1426-1428 (2003).
[CrossRef]

Chemtech (1)

B. Arkles, "Tailoring Surfaces with Silanes," Chemtech 7, 766 (1977).

J. Amer. Chem. Soc. (1)

K. D. Belfield, X. Ren, E. W. Van Stryland, D. J. Hagan, V. Dubikovsky, and E. J. Miesak, "Near-IR Two-Photon Photoinitiated Polymerization Using a Fluorone/Amine Initiating System," J. Amer. Chem. Soc. 122, 1217-1218 (2000).
[CrossRef]

J. Appl. Phys. (1)

T. Baldacchini, C. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, "Acrylic-Based Resin with Favorable Properties for Three-Dimensional Two-Photon Polymerization," J. Appl. Phys. 95, 6072-6076 (2004).
[CrossRef]

J. Electrochem. Soc. (2)

A. Auerbach, "On Depositing Conductors from Solution with a Laser," J. Electrochem. Soc. 132, 130-132 (1985).
[CrossRef]

A. Auerbach, "Method for Reducing Metal-Salts Complexed in a Polymer Host with a Laser," J. Electrochem. Soc. 132, 1437-1440 (1985).
[CrossRef]

J. Lightwave Tech. (1)

H. B. Sun and S. Kawata, "Two-Photon Laser Precision Microfabrication and Its Applications to Micro-Nano Devices and Systems," J. Lightwave Tech. 21, 624-633 (2003).
[CrossRef]

J. Phys. Chem. B (1)

O. L. A. Monti, J. T. Fourkas, and D. J. Nesbitt, "Diffraction-Limited Photogeneration and Characterization of Silver Nanoparticles," J. Phys. Chem. B 108, 1604-1612 (2004).
[CrossRef]

Macromol. (1)

P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, "3-Dimensional Submicron Polymerization of Acrylamide by Multiphoton Excitation of Xanthene Dyes," Macromol. 33, 1511-1513 (2000).
[CrossRef]

Nature (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-Photon Polymerization Initiators for Three-Dimensional Optical Data Storage and Microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Opt. Lett. (2)

Science (1)

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, "Photoactivated Fluorescence from Individual Silver Nanoclusters," Science 291, 103-106 (2001).
[CrossRef] [PubMed]

Other (1)

T. Baldacchini and J. T. Fourkas, "Three-Dimensional Nanofabrication Using Multiphoton Absorption," in Encyclopedia of Nanoscience and Nanotechnology, J. A. Schwarz, C. I. Contescu, and K. Putyera, eds. (Marcel Dekker, New York, 2004), pp. 3905-3915.

Supplementary Material (2)

» Media 1: AVI (227 KB)     
» Media 2: AVI (1217 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM images of representative photodeposited silver structures at different degrees of magnification. Panels (b)–(d) show close-ups of the second line from the left in panel (a). The lengths of the scale bars are 10 µm in (a), 1 µm in (b) and (c), and 100 nm in (d).

Fig. 2.
Fig. 2.

Transmitted-light optical micrographs of deposited silver patterns. In (a) the 50-µm-long vertical line was created first and the horizontal line was drawn from right to left starting at a position far from the vertical line. Deposition only commenced on the horizontal line when the laser focus reached the vertical line. The arrow in (b) indicates the position of the laser focus. Note that the silver luminesces as it is deposited. The spiral in this image is 100 µm across. (Movies 226 KB, 1.18 MB) [Media 1] [Media 2]

Fig. 3.
Fig. 3.

Typical AFM image (a) and profile (b) of a photodeposited silver line. The horizontal line in (a) denotes the position of the profile in (b).

Fig. 4.
Fig. 4.

(a)–(c) Transmitted-light optical micrographs of photopatterned two-dimensional diffraction gratings and (d)–(f) the corresponding diffraction patterns observed in transmission. The scale bars are 1.7 mm in (a), 1.3 mm in (b) and 1.2 mm in (c).

Metrics