Abstract

The first Raman laser with intra-cavity electronic switching is demonstrated. Digital control of intra-cavity gain is attained by using a diode gain cavity. In contrast to traditional Raman lasers, the Raman laser reported here is made from pure silicon and can be directly modulated to transmit data. Room temperature operation with 2.5W peak laser output power is demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Claps, D. Dimitropoulos, and B. Jalali, “Stimulated Raman scattering in silicon waveguides,” Electronics Lett. 38, 1352–1354 (2002).
    [CrossRef]
  2. Ozdal Boyraz and Bahram Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269
    [CrossRef] [PubMed]
  3. R.H. Stolen, C. Lin, J. Shah, and R.F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electronics QE-14, 860–862, (1978).
    [CrossRef]
  4. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using spherical dielectric microcavity,” Nature 415, 621–623, (2002).
    [CrossRef] [PubMed]
  5. A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. of Opt. B 5, 272–278 (2003).
    [CrossRef]
  6. R.A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electronics 23, 123–129, (1987).
    [CrossRef]
  7. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-verlag, New York, 2004).
  8. C.A. Barrios, V.R. de Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol. 21, 1089–1098, (2003).
    [CrossRef]
  9. A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [CrossRef] [PubMed]
  10. Ozdal Boyraz, Dimitri Dimitropoulos, and Bahram Jalali, “Observation of simultaneous Stokes and anti-Stokes emission in a silicon Raman laser,” IEICE Electron. Express 1, 435–441, (2004).
    [CrossRef]
  11. P. Koonath, T. Indukuri, and B. Jalali, “Vertically-coupled microdisk resonators realized using three-dimensional sculpting in Silicon,” Appl. Phys. Lett. 85, 1018–1020, (2004).
    [CrossRef]
  12. Ming-Chang M. Lee and Ming C. Wu, “A MEMS-Actuated Tunable Microdisk Resonator,” Proceedings of IEEE International Conference on Optical MEMS, 2003, MC3
  13. G.T. Reed, S.P. Chan, W. Headley, V.M.N. Passaro, L A. iu, and M. Paniccia, “Polarization independent devices in small SOI waveguides,” Proc. of Int. Conf. on Group IV photonics, FB5, (2004).
  14. T.K. Liang and H.K. Tsang; “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
    [CrossRef]
  15. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express12, 2774–2780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774
    [CrossRef] [PubMed]

2004 (4)

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Ozdal Boyraz, Dimitri Dimitropoulos, and Bahram Jalali, “Observation of simultaneous Stokes and anti-Stokes emission in a silicon Raman laser,” IEICE Electron. Express 1, 435–441, (2004).
[CrossRef]

P. Koonath, T. Indukuri, and B. Jalali, “Vertically-coupled microdisk resonators realized using three-dimensional sculpting in Silicon,” Appl. Phys. Lett. 85, 1018–1020, (2004).
[CrossRef]

T.K. Liang and H.K. Tsang; “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

2003 (2)

C.A. Barrios, V.R. de Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol. 21, 1089–1098, (2003).
[CrossRef]

A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. of Opt. B 5, 272–278 (2003).
[CrossRef]

2002 (2)

R. Claps, D. Dimitropoulos, and B. Jalali, “Stimulated Raman scattering in silicon waveguides,” Electronics Lett. 38, 1352–1354 (2002).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using spherical dielectric microcavity,” Nature 415, 621–623, (2002).
[CrossRef] [PubMed]

1987 (1)

R.A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electronics 23, 123–129, (1987).
[CrossRef]

1978 (1)

R.H. Stolen, C. Lin, J. Shah, and R.F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electronics QE-14, 860–862, (1978).
[CrossRef]

Barrios, C.A.

Bennett, B. R.

R.A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electronics 23, 123–129, (1987).
[CrossRef]

Boyraz, Ozdal

Ozdal Boyraz, Dimitri Dimitropoulos, and Bahram Jalali, “Observation of simultaneous Stokes and anti-Stokes emission in a silicon Raman laser,” IEICE Electron. Express 1, 435–441, (2004).
[CrossRef]

Ozdal Boyraz and Bahram Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269
[CrossRef] [PubMed]

Chan, S.P.

G.T. Reed, S.P. Chan, W. Headley, V.M.N. Passaro, L A. iu, and M. Paniccia, “Polarization independent devices in small SOI waveguides,” Proc. of Int. Conf. on Group IV photonics, FB5, (2004).

Claps, R.

R. Claps, D. Dimitropoulos, and B. Jalali, “Stimulated Raman scattering in silicon waveguides,” Electronics Lett. 38, 1352–1354 (2002).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express12, 2774–2780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774
[CrossRef] [PubMed]

Cohen, O.

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

de Almeida, V.R.

Dimitropoulos, D.

R. Claps, D. Dimitropoulos, and B. Jalali, “Stimulated Raman scattering in silicon waveguides,” Electronics Lett. 38, 1352–1354 (2002).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express12, 2774–2780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774
[CrossRef] [PubMed]

Dimitropoulos, Dimitri

Ozdal Boyraz, Dimitri Dimitropoulos, and Bahram Jalali, “Observation of simultaneous Stokes and anti-Stokes emission in a silicon Raman laser,” IEICE Electron. Express 1, 435–441, (2004).
[CrossRef]

Headley, W.

G.T. Reed, S.P. Chan, W. Headley, V.M.N. Passaro, L A. iu, and M. Paniccia, “Polarization independent devices in small SOI waveguides,” Proc. of Int. Conf. on Group IV photonics, FB5, (2004).

Ilchenko, V.S.

A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. of Opt. B 5, 272–278 (2003).
[CrossRef]

Indukuri, T.

P. Koonath, T. Indukuri, and B. Jalali, “Vertically-coupled microdisk resonators realized using three-dimensional sculpting in Silicon,” Appl. Phys. Lett. 85, 1018–1020, (2004).
[CrossRef]

iu, L A.

G.T. Reed, S.P. Chan, W. Headley, V.M.N. Passaro, L A. iu, and M. Paniccia, “Polarization independent devices in small SOI waveguides,” Proc. of Int. Conf. on Group IV photonics, FB5, (2004).

Jalali, B.

P. Koonath, T. Indukuri, and B. Jalali, “Vertically-coupled microdisk resonators realized using three-dimensional sculpting in Silicon,” Appl. Phys. Lett. 85, 1018–1020, (2004).
[CrossRef]

R. Claps, D. Dimitropoulos, and B. Jalali, “Stimulated Raman scattering in silicon waveguides,” Electronics Lett. 38, 1352–1354 (2002).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express12, 2774–2780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774
[CrossRef] [PubMed]

Jalali, Bahram

Ozdal Boyraz, Dimitri Dimitropoulos, and Bahram Jalali, “Observation of simultaneous Stokes and anti-Stokes emission in a silicon Raman laser,” IEICE Electron. Express 1, 435–441, (2004).
[CrossRef]

Ozdal Boyraz and Bahram Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269
[CrossRef] [PubMed]

Jones, R.

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using spherical dielectric microcavity,” Nature 415, 621–623, (2002).
[CrossRef] [PubMed]

Koonath, P.

P. Koonath, T. Indukuri, and B. Jalali, “Vertically-coupled microdisk resonators realized using three-dimensional sculpting in Silicon,” Appl. Phys. Lett. 85, 1018–1020, (2004).
[CrossRef]

Lee, Ming-Chang M.

Ming-Chang M. Lee and Ming C. Wu, “A MEMS-Actuated Tunable Microdisk Resonator,” Proceedings of IEEE International Conference on Optical MEMS, 2003, MC3

Leheny, R.F.

R.H. Stolen, C. Lin, J. Shah, and R.F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electronics QE-14, 860–862, (1978).
[CrossRef]

Letargat, R.J.

A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. of Opt. B 5, 272–278 (2003).
[CrossRef]

Liang, T.K.

T.K. Liang and H.K. Tsang; “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

Liao, L.

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Lin, C.

R.H. Stolen, C. Lin, J. Shah, and R.F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electronics QE-14, 860–862, (1978).
[CrossRef]

Lipson, M.

Liu, A.S.

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Lockwood, D. J.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-verlag, New York, 2004).

Maleki, L.

A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. of Opt. B 5, 272–278 (2003).
[CrossRef]

Matsko, A.B.

A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. of Opt. B 5, 272–278 (2003).
[CrossRef]

Nicolaescu, R.

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Paniccia, M.

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

G.T. Reed, S.P. Chan, W. Headley, V.M.N. Passaro, L A. iu, and M. Paniccia, “Polarization independent devices in small SOI waveguides,” Proc. of Int. Conf. on Group IV photonics, FB5, (2004).

Passaro, V.M.N.

G.T. Reed, S.P. Chan, W. Headley, V.M.N. Passaro, L A. iu, and M. Paniccia, “Polarization independent devices in small SOI waveguides,” Proc. of Int. Conf. on Group IV photonics, FB5, (2004).

Pavesi, L.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-verlag, New York, 2004).

Raghunathan, V.

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express12, 2774–2780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774
[CrossRef] [PubMed]

Reed, G.T.

G.T. Reed, S.P. Chan, W. Headley, V.M.N. Passaro, L A. iu, and M. Paniccia, “Polarization independent devices in small SOI waveguides,” Proc. of Int. Conf. on Group IV photonics, FB5, (2004).

Rubin, D.

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Savchenkov, A.A.

A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. of Opt. B 5, 272–278 (2003).
[CrossRef]

Shah, J.

R.H. Stolen, C. Lin, J. Shah, and R.F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electronics QE-14, 860–862, (1978).
[CrossRef]

Soref, R.A.

R.A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electronics 23, 123–129, (1987).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using spherical dielectric microcavity,” Nature 415, 621–623, (2002).
[CrossRef] [PubMed]

Stolen, R.H.

R.H. Stolen, C. Lin, J. Shah, and R.F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electronics QE-14, 860–862, (1978).
[CrossRef]

Tsang, H.K.

T.K. Liang and H.K. Tsang; “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using spherical dielectric microcavity,” Nature 415, 621–623, (2002).
[CrossRef] [PubMed]

Wu, Ming C.

Ming-Chang M. Lee and Ming C. Wu, “A MEMS-Actuated Tunable Microdisk Resonator,” Proceedings of IEEE International Conference on Optical MEMS, 2003, MC3

Appl. Phys. Lett. (2)

P. Koonath, T. Indukuri, and B. Jalali, “Vertically-coupled microdisk resonators realized using three-dimensional sculpting in Silicon,” Appl. Phys. Lett. 85, 1018–1020, (2004).
[CrossRef]

T.K. Liang and H.K. Tsang; “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

Electronics Lett. (1)

R. Claps, D. Dimitropoulos, and B. Jalali, “Stimulated Raman scattering in silicon waveguides,” Electronics Lett. 38, 1352–1354 (2002).
[CrossRef]

IEEE J. Quantum Electronics (2)

R.H. Stolen, C. Lin, J. Shah, and R.F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electronics QE-14, 860–862, (1978).
[CrossRef]

R.A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electronics 23, 123–129, (1987).
[CrossRef]

IEICE Electron. Express (1)

Ozdal Boyraz, Dimitri Dimitropoulos, and Bahram Jalali, “Observation of simultaneous Stokes and anti-Stokes emission in a silicon Raman laser,” IEICE Electron. Express 1, 435–441, (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. of Opt. B (1)

A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. of Opt. B 5, 272–278 (2003).
[CrossRef]

Nature (2)

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using spherical dielectric microcavity,” Nature 415, 621–623, (2002).
[CrossRef] [PubMed]

Other (5)

Ozdal Boyraz and Bahram Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269–5273 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269
[CrossRef] [PubMed]

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-verlag, New York, 2004).

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express12, 2774–2780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774
[CrossRef] [PubMed]

Ming-Chang M. Lee and Ming C. Wu, “A MEMS-Actuated Tunable Microdisk Resonator,” Proceedings of IEEE International Conference on Optical MEMS, 2003, MC3

G.T. Reed, S.P. Chan, W. Headley, V.M.N. Passaro, L A. iu, and M. Paniccia, “Polarization independent devices in small SOI waveguides,” Proc. of Int. Conf. on Group IV photonics, FB5, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The experimental setup used for electronically switched silicon Raman laser. A diode laser cavity is used as a gain medium. By using an external current supply the laser output is electronically controlled.

Fig. 2.
Fig. 2.

Input-output characteristic of the silicon Raman laser exhibiting a sharp threshold at 9W peak pump pulse power. Inset shows the geometry of the device used in our experiments.

Fig. 3.
Fig. 3.

Measured coherent anti-Stokes emission at 1443 nm. Wavelength of anti-Stokes emission matches the expected 15.6 THz up shifting of the 1560 nm pump laser.

Fig. 4.
Fig. 4.

Demonstration of electronic switching of the silicon Raman laser. 2.5 mA peak current with 200 ps rise and fall times is applied to the on-chip diode.

Fig. 5.
Fig. 5.

Electronic modulation results of the silicon Raman laser.

Metrics