Abstract

Recent demonstrations have shown that by creating a periodic surface corrugation about a single subwavelength aperture, the transmission can be enhanced at wavelengths related to the periodicity. We demonstrate that by varying the phase of the surface corrugation relative to the single subwavelength aperture, dramatic variations can be made in the transmission resonance lineshape at THz frequencies, ranging from transmission enhancement to transmission suppression. This finding is particularly surprising, since the nearly exclusive focus of published work has been on understanding and optimizing the enhancement process in these and associated structures. We present a simple model that qualitatively explains our observations. This represents, we believe, a first step in fully controlling the spectral transmission properties of these structures.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Bethe, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  2. C.J. Bouwkamp, �??Diffraction theory,�?? Rep. Prog. Phys. 17, 35-100 (1954).
    [CrossRef]
  3. D.E. Grupp, H.J. Lezec, T. Thio, T.W. Ebbesen, �??Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,�?? Adv. Mater. 11, 860-862 (1999).
    [CrossRef]
  4. T. Thio, K.M. Pellerin, R.A. Linke, H.J. Lezec, T.W. Ebbesen, �??Enhanced light transmission through a single subwavelength aperture,�?? Opt. Lett. 26, 1972-1974 (2001).
    [CrossRef]
  5. A. Nahata, R.A. Linke, T. Ishi, and K. Ohashi, �??Enhanced nonlinear optical conversion using periodically nanostructured metal films,�?? Opt. Lett. 28, 423-425 (2003).
    [CrossRef] [PubMed]
  6. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, F. Martin-Moreno, L.J. Garcia-Vidal, and T.W. Ebbesen, �??Beaming light from a subwavelength aperture,�?? Science 297, 220-222 (2002).
    [CrossRef]
  7. T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, R.A. Linke, �??Giant optical transmission of subwavelength apertures: physics and applications,�?? Nanotechnology 13, 429-432 (2002).
    [CrossRef]
  8. M.J. Lockyear, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, �??Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,�?? Appl. Phys. Lett. 84, 2040-2042 (2004).
    [CrossRef]
  9. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391, 667-669 (1998).
    [CrossRef]
  10. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, and H.J. Lezec, �??Surface plasmons enhance optical transmission through subwavelength holes,�?? Phys. Rev. B 83, 6779-6782 (1998).
    [CrossRef]
  11. A. Krishnan, T. Thio, T.J. Kim, H.J. Lezec, T.W. Ebbesen, P.A. Wolff, J. Pendry, L. Martin-Moreno, and F.J. Garcia-Vidal �??Evanescently coupled resonance in surface plasmon enhanced transmission,�?? Opt. Commun. 200, 1-7 (2001).
    [CrossRef]
  12. A. Dogariu, A. Nahata, R.A. Linke, L.J. Wang, and R. Trebino, �??Optical pulse propagation through metallic nano-apertures,�?? Appl. Phys. B 74, s69-s73 (2002).
    [CrossRef]
  13. D.E. Grupp, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, T. Thio, �??Crucial role of metal surface in enhanced transmission through subwavelength apertures,�?? Appl. Phys. Lett. 77, 1569-1571 (2000).
    [CrossRef]
  14. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, �??Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,�?? Appl. Opt. 22, 1099-1120 (1983).
    [CrossRef] [PubMed]
  15. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, �??Enhanced transmission of THz radiation through subwavelength holes,�?? Phys. Rev. B 68, 201306 (2003).
    [CrossRef]
  16. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1004">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1004</a.>
    [CrossRef] [PubMed]
  17. D. Qu, D. Grischkowsky, and W. Zhang, �??Terahertz transmission properties of thin, subwavelength metallic hole arrays,�?? Opt. Lett. 29, 896-898 (2004).
    [CrossRef] [PubMed]
  18. F. Miyamaru and M. Hangyo, �??Finite size effect of transmission property for metal hole arrays in subterahertz region,�?? Appl. Phys. Lett. 84, 2742-2744 (2004).
    [CrossRef]
  19. H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664-3672 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664</a.>
    [CrossRef] [PubMed]
  20. D. Qu, D. Grischkowsky, �??Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,�?? Phys. Rev. Lett. 93, 196804/1-4 (2004).
    [CrossRef]
  21. D. Grischkowsky, in Frontiers in Nonlinear Optics, edited by H. Walther, N. Koroteev, and M.O. Scully (Institute of Physics Publishing, Philadelphia, 1992) and references therein.
  22. O. Mitrofanov, M. Lee, J.W.P. Hsu, L.N. Pfeiffer, K.W. West, J.D.Wynn, and J.F. Federici, �??Terahertz pulse propagation through small apertures,�?? Appl. Phys. Lett. 79, 907-909 (2001).
    [CrossRef]
  23. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Vol. 111 of Springer Tracts in Modern Physics, Springer-Verlag, Berlin, 1988).

Adv. Mater. (1)

D.E. Grupp, H.J. Lezec, T. Thio, T.W. Ebbesen, �??Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,�?? Adv. Mater. 11, 860-862 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Dogariu, A. Nahata, R.A. Linke, L.J. Wang, and R. Trebino, �??Optical pulse propagation through metallic nano-apertures,�?? Appl. Phys. B 74, s69-s73 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

D.E. Grupp, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, T. Thio, �??Crucial role of metal surface in enhanced transmission through subwavelength apertures,�?? Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

M.J. Lockyear, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, �??Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,�?? Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

F. Miyamaru and M. Hangyo, �??Finite size effect of transmission property for metal hole arrays in subterahertz region,�?? Appl. Phys. Lett. 84, 2742-2744 (2004).
[CrossRef]

O. Mitrofanov, M. Lee, J.W.P. Hsu, L.N. Pfeiffer, K.W. West, J.D.Wynn, and J.F. Federici, �??Terahertz pulse propagation through small apertures,�?? Appl. Phys. Lett. 79, 907-909 (2001).
[CrossRef]

Nanotechnology (1)

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, R.A. Linke, �??Giant optical transmission of subwavelength apertures: physics and applications,�?? Nanotechnology 13, 429-432 (2002).
[CrossRef]

Nature (1)

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391, 667-669 (1998).
[CrossRef]

Opt. Commun. (1)

A. Krishnan, T. Thio, T.J. Kim, H.J. Lezec, T.W. Ebbesen, P.A. Wolff, J. Pendry, L. Martin-Moreno, and F.J. Garcia-Vidal �??Evanescently coupled resonance in surface plasmon enhanced transmission,�?? Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. (1)

H. Bethe, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. B (2)

H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, and H.J. Lezec, �??Surface plasmons enhance optical transmission through subwavelength holes,�?? Phys. Rev. B 83, 6779-6782 (1998).
[CrossRef]

J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, �??Enhanced transmission of THz radiation through subwavelength holes,�?? Phys. Rev. B 68, 201306 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

D. Qu, D. Grischkowsky, �??Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,�?? Phys. Rev. Lett. 93, 196804/1-4 (2004).
[CrossRef]

Rep. Prog. Phys. (1)

C.J. Bouwkamp, �??Diffraction theory,�?? Rep. Prog. Phys. 17, 35-100 (1954).
[CrossRef]

Science (1)

H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, F. Martin-Moreno, L.J. Garcia-Vidal, and T.W. Ebbesen, �??Beaming light from a subwavelength aperture,�?? Science 297, 220-222 (2002).
[CrossRef]

Vol. 111 of Springer Tracts in Modern Ph (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Vol. 111 of Springer Tracts in Modern Physics, Springer-Verlag, Berlin, 1988).

Other (1)

D. Grischkowsky, in Frontiers in Nonlinear Optics, edited by H. Walther, N. Koroteev, and M.O. Scully (Institute of Physics Publishing, Philadelphia, 1992) and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic representation of the corrugation geometry of the bullseye structures relative to the central aperture. (A) Photograph of a typical in-phase bullseye structure used in the experiment. (B) Cross-sectional line diagrams of the four bullseye structures. The surface corrugation pattern in these structures is shifted relative to one another by a phase of π/2. The dotted lines in (B) represent the location of the circular aperture. The grooves in each structure have square cross-section. In all experiments, the THz pulses were incident on the corrugated surface at normal incidence.

Fig. 2.
Fig. 2.

Experimentally observed time-domain waveforms and corresponding amplitude spectra for the structures shown in Fig. 1. (a) Five time domain waveforms. The top trace corresponds to a bare aperture. The lower four traces correspond to the four bullseye structures. (b) The amplitude spectra obtained by Fourier transforming the time-domain waveforms. In each case, the spectra were normalized to the peak transmission value in an equivalently thick bare aperture.

Fig. 3.
Fig. 3.

Numerical simulations of time-domain waveforms and corresponding amplitude spectra. (a) Five time-domain waveforms. The top trace consists of a single cycle pulse, i.e., the principal pulse, which corresponds to the non-resonant transmission through a bare aperture. The lower four traces consist of a superposition of the single cycle pulse and a damped sinusoid. The phase difference between the single cycle pulse and the sinusoids is 0, π/2, π, and 3π/2, respectively. (b) The amplitude spectra obtained by Fourier transforming the time-domain waveforms. The simulation results are in good qualitative agreement with the experimental results shown in Fig. 2.

Fig. 4.
Fig. 4.

Effect of offsetting the aperture from the center for the in-phase bullseye structure. (A) Cross-sectional line diagrams of the aperture placement. In each structure, the apertures were successively moved 0.25 mm further from the center corresponding to 0, 0.25, 0.5, 0.75, and 1 mm from the center. The dotted lines in (a) represent the location of the circular aperture. The grooves in each structure have square cross-section. (b) The amplitude spectra obtained by Fourier transforming the measured time-domain waveforms. In each case, the spectra were normalized to the peak transmission value in an equivalently thick bare aperture.

Metrics