Abstract

Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g (2)(τ). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, "Quantum Cryptography," Rev. Mod. Phys. 74, 145-196 (2002)
    [CrossRef]
  2. T. E. Ingerson, R. J. Kearney, R. L. Coulter, "Photon counting with photodiodes," Appl. Op. 22, 2013-2018 (1983)
    [CrossRef]
  3. R. G. W. Brown, K .D. Ridley, J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon-correlation measurements .1. passive quenching," Appl. Opt. 25, 4122-4126 (1986)
    [CrossRef] [PubMed]
  4. R. G. W. Brown, R. Jones, J. G. Rarity, K. D. Ridley, "Characterization of silicon avalanche photodiodes for photon-correlation measurements .2. active quenching," Appl. Opt. 26, 2383-2389 (1987)
    [CrossRef] [PubMed]
  5. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, "High-efficiency single-photon detectors," Phys. Rev. A 48, 867-870 (1993)
    [CrossRef]
  6. S. Cova, A. Longoni, A. Andreoni, "Towards picosecond resolution with single photon avalanche diodes," Review of Scientific Instruments 52, 408-412 (1981)
    [CrossRef]
  7. F. Zappa, A. Lacaita, S. Cova, P. Webb, "Nanosecond single-photon timing with InGaAs/InP photodiodes," Opt. Lett. 19, 846-848 (1994)
    [CrossRef] [PubMed]
  8. D. Bethune, W. Risk, "An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light," IEEE J. Quantum Electron. 36, 340-347 (2000)
    [CrossRef]
  9. J. S. Vickers, R. Ispasoiu, D. Cotton, J. Frank, B. Lee, S. Kasapi Proc. IEEE 16th Annual Meeting Lasers and Electro-Optics Society, LEOS 2003 (Institute of Electrical and Electronics Engineers, New York) 2, 600 - 601 (2003)
  10. J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, P. R. Tapster, "Single-photon counting for the 1300-1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes" Appl. Opt. 39, 6746-6753 (2000)
    [CrossRef]
  11. D. Rosenberg, A.E. Lita, A. J. Miller, S. W. Nam, R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans, Appl Superconductivity 15, 575-578 (2005)
    [CrossRef]
  12. D. Rosenberg, A. E. Lita, A. J. Miller, S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev A, Rapid Comm. 71, 061803 R (2005)
  13. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001)
    [CrossRef]
  14. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirov, G. N. Gol’tsman, A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared," Appl. Phys. Lett. 80, 4687-4689 (2002)
    [CrossRef]
  15. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Golt’sman, M. Currie, W. Lo, K. Wilsher K., J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5430 (2004)
    [CrossRef]
  16. A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O.Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, R. Sobolewski "Ultrafast single-photon detectors for near-infrared-wavelength quantum communications," J. Modern Opt. 51, 1447-1458 2004
  17. M. Tinkam Introduction to Superconductivitiy McGraw-Hill 2nd Ed 1996
  18. R. Radebaugh "Refrigeration for Superconductors," Proceedings of the IEEE 92, 1719-1734 (2004).
    [CrossRef]
  19. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single photon turnstile device," Science 290, 2282 (2000)
    [CrossRef] [PubMed]
  20. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, "Triggered single photons from a quantum dot," Phys. Rev. Lett. 86, 1502-1505 (2001)
    [CrossRef] [PubMed]
  21. R. Hanbury-Brown, R. Q. Twiss ‘ Correlation between photons in two coherent beams of light’ Nature 117, 27 (1956)
    [CrossRef]
  22. Losses within our SSPD system include free space to fiber outside the cryostat and fiber to SSPD inside the cryostat.
  23. The time window gating method was not employed in the experiments described here as the dark count rate was already sufficiently low.
  24. D. Dalacu, D. Poitras, J. Lefbevre, P.J. Poole, G. C. Aers, R.L. Williams, "InAs/InP quantum dot pillar microcavities using SiO2/Ta2O5 Bragg reflectors with emission around 1.5 µm," Appl. Phys. Lett. 84, 3235-3237 (2004).
    [CrossRef]
  25. B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, T. Buchs, A. Fiore, E. Pelucchi, E. Kapon, "Growth and characterization of single quantum dots emitting at 1300 nm," Appl. Phys. Lett. 86, 101908-101910 2005
    [CrossRef]
  26. M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevauz, A. J. Shields, P. Atkinson, D. A. Ritchie, "On demand single photon source for 1.3 ìm telecom fiber," Appl. Phys. Lett. 86, 201111-201113(2005)
    [CrossRef]

Appl. Op. (1)

T. E. Ingerson, R. J. Kearney, R. L. Coulter, "Photon counting with photodiodes," Appl. Op. 22, 2013-2018 (1983)
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (6)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001)
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirov, G. N. Gol’tsman, A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared," Appl. Phys. Lett. 80, 4687-4689 (2002)
[CrossRef]

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Golt’sman, M. Currie, W. Lo, K. Wilsher K., J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5430 (2004)
[CrossRef]

D. Dalacu, D. Poitras, J. Lefbevre, P.J. Poole, G. C. Aers, R.L. Williams, "InAs/InP quantum dot pillar microcavities using SiO2/Ta2O5 Bragg reflectors with emission around 1.5 µm," Appl. Phys. Lett. 84, 3235-3237 (2004).
[CrossRef]

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, T. Buchs, A. Fiore, E. Pelucchi, E. Kapon, "Growth and characterization of single quantum dots emitting at 1300 nm," Appl. Phys. Lett. 86, 101908-101910 2005
[CrossRef]

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevauz, A. J. Shields, P. Atkinson, D. A. Ritchie, "On demand single photon source for 1.3 ìm telecom fiber," Appl. Phys. Lett. 86, 201111-201113(2005)
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Bethune, W. Risk, "An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light," IEEE J. Quantum Electron. 36, 340-347 (2000)
[CrossRef]

IEEE Trans, Appl Superconductivity (1)

D. Rosenberg, A.E. Lita, A. J. Miller, S. W. Nam, R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans, Appl Superconductivity 15, 575-578 (2005)
[CrossRef]

J. Modern Opt. (1)

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O.Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, R. Sobolewski "Ultrafast single-photon detectors for near-infrared-wavelength quantum communications," J. Modern Opt. 51, 1447-1458 2004

LEOS 2003 (1)

J. S. Vickers, R. Ispasoiu, D. Cotton, J. Frank, B. Lee, S. Kasapi Proc. IEEE 16th Annual Meeting Lasers and Electro-Optics Society, LEOS 2003 (Institute of Electrical and Electronics Engineers, New York) 2, 600 - 601 (2003)

Nature (1)

R. Hanbury-Brown, R. Q. Twiss ‘ Correlation between photons in two coherent beams of light’ Nature 117, 27 (1956)
[CrossRef]

Opt. Lett. (1)

Phys. Rev A, Rapid Comm. (1)

D. Rosenberg, A. E. Lita, A. J. Miller, S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev A, Rapid Comm. 71, 061803 R (2005)

Phys. Rev. A (1)

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, "High-efficiency single-photon detectors," Phys. Rev. A 48, 867-870 (1993)
[CrossRef]

Phys. Rev. Lett. (1)

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, "Triggered single photons from a quantum dot," Phys. Rev. Lett. 86, 1502-1505 (2001)
[CrossRef] [PubMed]

Proceedings of the IEEE (1)

R. Radebaugh "Refrigeration for Superconductors," Proceedings of the IEEE 92, 1719-1734 (2004).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, "Quantum Cryptography," Rev. Mod. Phys. 74, 145-196 (2002)
[CrossRef]

Review of Scientific Instruments (1)

S. Cova, A. Longoni, A. Andreoni, "Towards picosecond resolution with single photon avalanche diodes," Review of Scientific Instruments 52, 408-412 (1981)
[CrossRef]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single photon turnstile device," Science 290, 2282 (2000)
[CrossRef] [PubMed]

Other (3)

M. Tinkam Introduction to Superconductivitiy McGraw-Hill 2nd Ed 1996

Losses within our SSPD system include free space to fiber outside the cryostat and fiber to SSPD inside the cryostat.

The time window gating method was not employed in the experiments described here as the dark count rate was already sufficiently low.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the coincidence measurement setup used for single photon source characterization. The Si Avalanche Photodiode (APD) is used as the start trigger for the time-to-amplitude converter/multichannel analyzer and the Superconducting Single Photon Detector (SSPD) is used as the stop. In the carrier lifetime measurement either the SSPD or APD is used as the start, and the stop trigger comes from the fast photodiode (PD) monitoring the laser output.

Fig. 2.
Fig. 2.

Emission spectra of cavity-embedded quantum dot at 30 K. At low pump power (3.9 μW average power, solid red trace), emission is dominated by a single quantum dot line at ~902 nm. Other emission lines from this dot or other dots in the same pillar are visible as weaker surrounding peaks. At high pump power (35 μW, dotted blue trace, magnitude reduced by a factor of 50), excited states from all dots in this pillar generate broadband continuum emission, which is spectrally filtered by the optical cavity. As a result, the blue curve shows the Lorentzian-shaped cavity mode, also centered at ~902 nm and with a FWHM of ~0.6 nm. Comparison of the red and blue traces indicates that the quantum dot line is resonant with the cavity mode. The data in figs. 3 and 4 were acquired under the same experimental conditions as the low power spectrum shown here in red, with the monochromator tuned to pass only the quantum dot emission line at ~902 nm.

Fig. 3.
Fig. 3.

Coincidence counts versus delay time histogram for an InGaAs single photon source at λ= 902 nm measured with a double APD (upper, blue trace) and an SSPD/APD (lower, red trace) configuration. The coincidences are proportional to the second order correlation function of the source, g (2)(τ). In both cases the zero delay peak area is suppressed to 24 % of the area of the other peaks (averaged over a wider range than shown), indicating a four-fold decrease in multiphoton emission relative to a Poissonian source of equal intensity. The non-zero delay peaks in the SSPD/APD trace are 17 % narrower than those of the double APD trace, owing to the lower jitter of the SSPD relative to an APD.

Fig. 4.
Fig. 4.

Time-resolved measurements of spontaneous emission lifetime at 902 nm on resonance. The red triangles are data acquired with an SSPD, the blue diamonds with an APD. The plots are fitted (solid lines) with an exponential decay (time constant 0.37 ns) convolved with a Gaussian approximation to the instrument response function (IRF). The SSPD IRF has a FWHM of 170ps - this is wider than SSPD jitter measurements reported elsewhere and may be broadened by our rf amplifiers and TCA/MCA electronics. The APD IRF is nevertheless significantly wider (FWHM 550 ps).

Fig. 5.
Fig. 5.

SSPD system detection efficiency versus dark counts at 902 nm (blue triangles) and 1550 nm (red diamonds). The arrows indicate the direction of increasing bias towards I C. The data covers the approximate range in I bias from 60% to 95% I C.

Tables (1)

Tables Icon

Table 1. Detector performances in this experiment

Metrics