Abstract

We fabricate and measure a microfluidic variable optical attenuator which consists of an optical waveguide integrated with a microfluidic channel. An opening is introduced in the upper cladding of the waveguide in order to facilitate the alignment and bonding of the microfluidic channel. By using fluids with different refractive indices, the optical output power is gradually attenuated. We obtain a maximum attenuation of 28 dB when the fluid refractive index changes from 1.557 to 1.584.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10, 1262-1264 (1998).
    [CrossRef]
  2. X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382-383 (2002).
    [CrossRef]
  3. T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC type compact variable optical attenuator for photonic transport network,” Electron. Lett. 34, 264–265 (1998).
    [CrossRef]
  4. M. Lenzi, S. Tebaldini, D. D. Mola, S. Brunazzi, and L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999).
    [CrossRef]
  5. G. Z. Xiao, Z. Zhang, and C. P. Grover, “A variable optical attenuator based on a straight polymer–silica hybrid channel waveguide,” IEEE Photon. Technol. Lett. 16, 2511-2513 (2004).
    [CrossRef]
  6. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179-184 (2002).
    [CrossRef]
  7. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett. 79, 3191-3193 (2004).
    [CrossRef]
  8. P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294-4296 (2004).
    [CrossRef]
  9. C. Grillet, P. Domachuk, V. Ta'eed, E. Magi. J. A. Bolger, B. J. Eggleton, L. E. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5440>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5440</a>.
    [CrossRef] [PubMed]
  10. P. Domachuk, M. Cronin-Golomb, B. J. Eggleton, S. Mutzenich, G. Rosengarten, and A. Mitchell, “Application of optical trapping to beam manipulation in optofluidics,” Opt. Express 13, 7265-7275 (2005). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7265>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7265</a>.
    [CrossRef] [PubMed]
  11. 11. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnology 17, pp. 1109–1111 (1999).
    [CrossRef] [PubMed]
  12. S. Balslev and A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13, 344-351 (2005). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-344>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-344</a>.
    [CrossRef] [PubMed]
  13. M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 1348-1354 (2005).
  14. J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
    [CrossRef] [PubMed]
  15. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hubner, and J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246–6251 (2001).
    [CrossRef]
  16. V. Lien, Y. Berdichevsky, and Y. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photonics Technol. Lett. 16, 1525-1527 (2004).
    [CrossRef]
  17. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
    [CrossRef]
  18. Y. Huang, G.T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85, 3005-3007 (2004).
    [CrossRef]

Anal. Chem.

J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Huang, G.T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85, 3005-3007 (2004).
[CrossRef]

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett. 79, 3191-3193 (2004).
[CrossRef]

P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294-4296 (2004).
[CrossRef]

Electron. Lett.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382-383 (2002).
[CrossRef]

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC type compact variable optical attenuator for photonic transport network,” Electron. Lett. 34, 264–265 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Lenzi, S. Tebaldini, D. D. Mola, S. Brunazzi, and L. Cibinetto, “Power control in the photonic domain based on integrated arrays of optical variable attenuators in glass-on-silicon technology,” IEEE J. Sel. Top. Quantum Electron. 5, 1289–1297 (1999).
[CrossRef]

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Top. Quantum Electron. 23, 1348-1354 (2005).

IEEE Photon. Technol. Lett.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Photon. Technol. Lett. 10, 1262-1264 (1998).
[CrossRef]

G. Z. Xiao, Z. Zhang, and C. P. Grover, “A variable optical attenuator based on a straight polymer–silica hybrid channel waveguide,” IEEE Photon. Technol. Lett. 16, 2511-2513 (2004).
[CrossRef]

IEEE Photonics Technol. Lett.

V. Lien, Y. Berdichevsky, and Y. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photonics Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

Nature Biotechnology

11. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnology 17, pp. 1109–1111 (1999).
[CrossRef] [PubMed]

Opt. Commun.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic flowchart for the fabrication of an integrated microfluidic variable optical attenuator. The sequential steps are labeled from (a) to (g).

Fig. 2.
Fig. 2.

The optical image shows the integrated microfluidic optical chip and the inset SEM image shows SU-8 waveguide core embedded in the window opening of the BCB cladding. Two pin holes in the fluid chambers part on the microfluidic layer serve as fluid input and output ports. From the inset, the height of the SU-8 waveguide core and BCB cladding are 1.8 μm and 4.2 μm, respectively.

Fig. 3.
Fig. 3.

Simulated and measured attentuation for the fabricated microfluidic variable optical attenuator. The dotted line is the simulation result and the solid line is the measured normalized attenuation for the device. The attenuation is the average of all polarization states.The dashed line is the PDL for the device.

Fig. 4.
Fig. 4.

Measured transient response for the fabricated microfluidic variable optical attenuator as the fluid refractive index changes between 1.37 and 1.58.

Metrics