Abstract

In this paper, we report, for the first time, an inherently gain-flattened discrete highly nonlinear photonic crystal fiber (HNPCF) Raman amplifier (HNPCF-RA) design which shows 13.7 dB of net gain (with ±0.85-dB gain ripple) over 28-nm bandwidth. The wavelength dependent leakage loss property of HNPCF is used to flatten the Raman gain of the amplifier module. The PCF structural design is based on W-shaped refractive index profile where the fiber parameters are well optimized by homely developed genetic algorithm optimization tool integrated with an efficient vectorial finite element method (V-FEM). The proposed fiber design has a high Raman gain efficiency of 4.88 W-1· km-1 at a frequency shift of 13.1 THz, which is precisely evaluated through V-FEM. Additionally, the designed module, which shows ultra-wide single mode operation, has a slowly varying negative dispersion coefficient (-107.5 ps/nm/km at 1550 nm) over the operating range of wavelengths. Therefore, our proposed HNPCF-RA module acts as a composite amplifier with dispersion compensator functionality in a single component using a single pump.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, (Kulwer Academic Publishers 2003).
    [CrossRef]
  2. T.A. Birks, J.C. Knight, and P.St.J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  3. K. Saitoh and M. Koshiba, �??Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion,�?? Opt. Express 11, 843-852 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843</a>
    [CrossRef] [PubMed]
  4. A. Huttunen and P. Torma, �??Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,�?? Opt. Express 13, 627-635 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627</a>
    [CrossRef] [PubMed]
  5. T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, �??Holey optical fibers: An efficient modal model,�?? J. Lightwave Technol. 17, 1093-1102 (1999).
    [CrossRef]
  6. R. K. Sinha and S. K. Varshney, �??Dispersion properties of photonic crystal fibers,�?? Microwave Opt. Technol. Lett. 37, 129-132 (2003).
    [CrossRef]
  7. F. Gérome, J.L. Auguste, and J. M. Blondy, �??Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,�?? Opt. Lett. 29, 2725-2727 (2004).
    [CrossRef] [PubMed]
  8. C. Headly and G. P. Agarwal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, New York, 2004).
  9. M. N. Islam, Raman Amplification for Telecommunications 1(Springer, 2003).
  10. Y. Emori, Y. Akasaka, and S. Namiki, �??Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes,�?? Electron. Lett. 34, 2145-2146 (1998).
    [CrossRef]
  11. K. Thyagarajan and C. Kakkar, �??Novel fiber design for flat gain Raman amplification using single pump and dispersion compensation in S band,�?? J. Lightwave Technol. 22, 2279-2286 (2004).
    [CrossRef]
  12. C. Kakkar and K. Thyagarajan, �??High gain Raman amplifier with inherent gain flattening and dispersion compensation,�?? Opt. Commun. 250, 77-83 (2005).
    [CrossRef]
  13. Z. Yusoff, J.H.Lee, W. Belardi, T.M.Monro, P.C. Teh, and D. J. Richardson, �??Raman effects in a highly nonlinear holey fiber: amplification and modulation,�?? Opt. Lett. 27, 424-426 (2002).
    [CrossRef]
  14. C.J.S. de Matos, K. P. Hansen, and J. R. Taylor, �??Experimental characterization of Raman gain efficiency of holey fiber,�?? Electron. Lett. 39, 424-425 (2003).
    [CrossRef]
  15. M. Fuochi, F. Poli, A. Cucinotta, and L. Vincetti, �??Study of Raman amplification properties in triangular photonic crystal fibers,�?? J. Lightwave Technol. 21, 2247-2254 (2003).
    [CrossRef]
  16. M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri, �??Modeling of photonic crystal fiber Raman amplifiers,�?? J. Lightwave Technol. 22, 1707-1713 (2004).
    [CrossRef]
  17. S.K. Varshney, K. Saitoh, and M. Koshiba, �??A novel fiber design for dispersion compensating photonic crystal fiber Raman amplifier,�?? IEEE Photon. Technol. Lett. 17, 2062-2065 (2005).
    [CrossRef]
  18. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, �??Photonic crystal fiber design by means of a genetic algorithm,�?? Opt. Express 12, 1990-1995 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1990">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1990</a>
    [CrossRef] [PubMed]
  19. F. Poletti, V. Finazzi, T.M. Monro, N.G.R. Broderick, V. Tse, and D.J. Richardson, �?? Inverse design and fabrication tolerances of ultra-flattened dispresion holey fibers,�?? Opt. Express 13, 3728-3736 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728</a>
    [CrossRef] [PubMed]
  20. M. Koshiba and K. Saitoh, �??Numerical verification of degeneracy in hexagonal photonic crystal fibers,�?? IEEE Photon. Technol. Lett. 13, 1313-1315 (2001).
    [CrossRef]
  21. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  22. M. Koshiba and K. Saitoh, �??Structural dependence of effective area and mode field diameter for holey fibers,�?? Opt. Express 11, 1746-1756 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1746">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1746</a>
    [CrossRef] [PubMed]
  23. T.P. White, R.C. Mcphedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, �??Confinement loss in microstructured optical fibers,�?? Opt. Lett. 26, 1660-1662 (2001).
    [CrossRef]
  24. M.D. Nielsen and N.A Mortensen, �??Photonic crystal fiber design based on the V-parameter,�?? Opt. Express 11, 2762-2768 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762</a>
    [CrossRef] [PubMed]
  25. M. Koshiba and K. Saitoh, �??Applicability of classical optical fiber theories to holey fibers,�?? Opt. Lett. 29, 1739-1741 (2004).
    [CrossRef] [PubMed]
  26. D. Marcuse, �??Loss analysis of single-mode fiber splices,�?? Bell Syst. Tech. Journal 56, 703-717 (1977).
  27. J. Bromage, K. Rottwitt, and M. E. Lines, �??A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,�?? IEEE Photon. Technol. Lett. 14, 24-26 (2002).
    [CrossRef]
  28. S. Namiki and Y. Emori, �??Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,�?? IEEE J. Sel. Top. Quantum Electron. 7, 3-16 (2001).
    [CrossRef]
  29. J. Bromage, �??Raman amplification for fiber communication systems,�?? J. Lightwave Technol. 22, 79-93 (2004).
    [CrossRef]
  30. A. Belahlou, S. Bickham, D. Chowdhury et al, �??Fiber design considerations for 40 GB/s systems,�?? J. Lightwave Technol. 20, 2290-2305 (2002).
    [CrossRef]
  31. S.A.E Lewis, S.V. Chernikov, and J. R. Taylor, �??Broadband high-gain dispersion compensating Raman amplifier,�?? Electron. Lett. 36, 1355-1356 (2000).
    [CrossRef]
  32. S.G. Leon-Saval, T.A. Birks, N.Y. Joy, A.K. George, W.J. Wadsworth, G. Kakarantzas, and P.St.J. Russell, �??Splice-free interfacing of photonic crystal fibers,�?? Opt. Lett. 30, 1629-1634 (2005).
    [CrossRef] [PubMed]

Bell Syst. Tech. Journal (1)

D. Marcuse, �??Loss analysis of single-mode fiber splices,�?? Bell Syst. Tech. Journal 56, 703-717 (1977).

Electron. Lett. (3)

S.A.E Lewis, S.V. Chernikov, and J. R. Taylor, �??Broadband high-gain dispersion compensating Raman amplifier,�?? Electron. Lett. 36, 1355-1356 (2000).
[CrossRef]

Y. Emori, Y. Akasaka, and S. Namiki, �??Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes,�?? Electron. Lett. 34, 2145-2146 (1998).
[CrossRef]

C.J.S. de Matos, K. P. Hansen, and J. R. Taylor, �??Experimental characterization of Raman gain efficiency of holey fiber,�?? Electron. Lett. 39, 424-425 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Namiki and Y. Emori, �??Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,�?? IEEE J. Sel. Top. Quantum Electron. 7, 3-16 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Bromage, K. Rottwitt, and M. E. Lines, �??A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles,�?? IEEE Photon. Technol. Lett. 14, 24-26 (2002).
[CrossRef]

M. Koshiba and K. Saitoh, �??Numerical verification of degeneracy in hexagonal photonic crystal fibers,�?? IEEE Photon. Technol. Lett. 13, 1313-1315 (2001).
[CrossRef]

S.K. Varshney, K. Saitoh, and M. Koshiba, �??A novel fiber design for dispersion compensating photonic crystal fiber Raman amplifier,�?? IEEE Photon. Technol. Lett. 17, 2062-2065 (2005).
[CrossRef]

J. Lightwave Technol. (6)

Microwave Opt. Technol. Lett. (1)

R. K. Sinha and S. K. Varshney, �??Dispersion properties of photonic crystal fibers,�?? Microwave Opt. Technol. Lett. 37, 129-132 (2003).
[CrossRef]

Opt. Commun. (1)

C. Kakkar and K. Thyagarajan, �??High gain Raman amplifier with inherent gain flattening and dispersion compensation,�?? Opt. Commun. 250, 77-83 (2005).
[CrossRef]

Opt. Express (6)

E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, �??Photonic crystal fiber design by means of a genetic algorithm,�?? Opt. Express 12, 1990-1995 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1990">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1990</a>
[CrossRef] [PubMed]

F. Poletti, V. Finazzi, T.M. Monro, N.G.R. Broderick, V. Tse, and D.J. Richardson, �?? Inverse design and fabrication tolerances of ultra-flattened dispresion holey fibers,�?? Opt. Express 13, 3728-3736 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728</a>
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, �??Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion,�?? Opt. Express 11, 843-852 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843</a>
[CrossRef] [PubMed]

A. Huttunen and P. Torma, �??Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,�?? Opt. Express 13, 627-635 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627</a>
[CrossRef] [PubMed]

M. Koshiba and K. Saitoh, �??Structural dependence of effective area and mode field diameter for holey fibers,�?? Opt. Express 11, 1746-1756 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1746">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1746</a>
[CrossRef] [PubMed]

M.D. Nielsen and N.A Mortensen, �??Photonic crystal fiber design based on the V-parameter,�?? Opt. Express 11, 2762-2768 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762</a>
[CrossRef] [PubMed]

Opt. Lett. (6)

Other (3)

C. Headly and G. P. Agarwal, Raman Amplification in Fiber Optical Communication Systems (Academic Press, New York, 2004).

M. N. Islam, Raman Amplification for Telecommunications 1(Springer, 2003).

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, (Kulwer Academic Publishers 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Transverse cross-section of optimized HNPCF and its schematic refractive index profile.

Fig. 2.
Fig. 2.

Spectral variation of effective index of the fundamental core mode (oe-13-23-9516-i001) and outer clad (oe-13-23-9516-i002) of the designed HNPCF.

Fig. 3.
Fig. 3.

Spectral variation of splice loss between optimized HNPCF and conventional SMF.

Fig. 4.
Fig. 4.

Variation of Raman gain efficiency as a function of frequency shift for the designed HNPCF pumped at 1455 nm depolarized pump.

Fig. 5.
Fig. 5.

Spectral variation of double Rayleigh backscattering coefficient for the optimized HNPCF.

Fig. 6.
Fig. 6.

Variation of the optimized leakage loss and dispersion for the designed HNPCF.

Fig. 7.
Fig. 7.

Residual dispersion of 2-km long optimized HNPCF, compensating 12.5 km long SMF.

Fig. 8.
Fig. 8.

Net gain spectra for optimized 2-km long HNPCF-RA module.

Fig. 9.
Fig. 9.

Spectral variation of DRB for optimized 2-km long HNPCF-RA module.

Fig. 10.
Fig. 10.

NF spectra for optimized 2-km long HNPCF-RA module.

Fig. 11.
Fig. 11.

OSNR spectra for optimized 2-km long HNPCF-RA module.

Fig. 12.
Fig. 12.

Spectral variation of leakage loss for different set of air-hole rings in inner and outer clad of the HNPCF.

Fig. 13.
Fig. 13.

Effect of leakage loss on net gain spectra for different set of air-hole rings in inner and outer clad of HNPCF.

Fig. 14.
Fig. 14.

Spectral variation of net gain spectra for (i) optimized HNPCF-RA and ±1% variation in the (ii)-(iii) lattice period, (iv)-(v) hole diameter of inner cladding air-holes and (vi)-(vii) hole-diameter of outer cladding air-holes, of the optimized HNPCF-RA module.

Tables (1)

Tables Icon

Table 1. Comparison of Raman performances of our optimized HNPCF-RA module and conventional HNLF-RA module [12]

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

F ( Λ , d , d ' ) = exp ( w 1 f 1 )
f 1 = λ = 1.44 μ m 1.47 μ m D ( λ ) ,
γ R ( Δ ν ) = ∫∫ S C SiSi ( Δ ν ) i s x y i p x y dx dy
ε R ( λ i ) = 3 8 π λ i 2 n Si 2 ∫∫ S C R i 2 x y dx dy
± dP k ± dz = α k P k ± + P k ± j = 1 k 1 ν j ν ref γ R ( Δ ν j , k ) k p ( P j ± + P j + P ASE , j ± + P ASE , j )
P k ± j = k + 1 N ν k ν ref ν k ν j γ R ( Δ ν k , j ) k p ( P j ± + P j + P ASE , j ± + P ASE , j )
P k ± j = k + 1 N ν k ν ref ν k ν j γ R ( Δ ν k , j ) k p 4 h ν k Δ ν E j k
± dP ASE , k ± dz = α k P ASE , k ± + ε k P ASE , k ± + P ASE , k ± j = 1 k 1 ν j ν ref γ R ( Δ ν j , k ) k p ( P j ± + P j + P ASE , j ± + P ASE , j )
P ASE , k ± j = k + 1 N ν k ν ref ν k ν j γ R ( Δ ν k , j ) k p 4 h ν k Δ ν E j k
P ASE , k ± j = k + 1 N ν k ν ref ν k ν j γ R ( Δ ν k , j ) k p ( P j ± + P j + P ASE , j ± + P ASE , j )
+ j = 1 k 1 ν j ν ref γ R ( Δ ν k , j ) k p 2 h ν k Δ ν ( P j ± + P j + P ASE , j ± + P ASE , j ) E j k
± dP SRB , k ± dz = α k P SRB , k ± + ε k ( P SRB , k + P k )
+ P SRB , k ± j = 1 k 1 ν j ν ref γ R ( Δ ν j , k ) k p ( P j ± + P j + P ASE , j ± + P ASE , j )
P SRB , k ± j = k + 1 N ν k ν ref ν k ν j γ R ( Δ ν k , j ) k p ( P j ± + P j + P ASE , j ± + P ASE , j )
P SRB , k ± j = k + 1 N ν k ν ref ν k ν j γ R ( Δ ν k , j ) k p 4 h ν k Δ ν E j k
E j k = 1 + 1 exp ( h ν j ν k k B T ) 1
Raman gain G [ dB ] = 10 log 10 ( P s + ( L ) P s + ( 0 ) )
OSNR [ dB ] = 10 log 10 ( P s + ( L ) P ASE + ( L ) + P SRB + ( L ) )
DRB [ dB ] = 10 log 10 ( P SRB + ( L ) P s + ( L ) )
NF [ dB ] = 10 log 10 [ 1 G ( 2 P ASE + Δ μ + 1 ) ]

Metrics