Abstract

A simple method for fabricating selective injection microstructured optical fibers (MOFs) using a conventional fusion splicer is described. The effects of fusion current, fusion duration and offset position on the hole collapse property of the MOFs are investigated. With this method, the central hollow-core and the holes in the cladding region can be selectively infiltrated, which allows for the fabrication of novel hybrid polymer-silica and liquid-silica MOFs for various applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, �??Microfluidic tunable photonic band-gap device,�?? Appl. Phys. Lett. 84, 1838-1840 (2004).
    [CrossRef]
  2. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, �??Optical devices based on liquid crystal photonic bandgap fibres,�?? Opt. Express 11, 2589-2596 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589</a>.
    [CrossRef] [PubMed]
  3. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, �??Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,�?? Opt. Commun. 204, 179-184 (2002).
    [CrossRef]
  4. C. Kerbage, and B. J. Eggleton, �??Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,�?? Opt. Express 10, 246-255 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-246">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-246</a>.
    [PubMed]
  5. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, �??Highly tunable birefringent microstructured optical fiber,�?? Opt. Lett. 27, 842-844 (2002).
    [CrossRef]
  6. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, �??Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,�?? Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]
  7. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, �??Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,�?? Phys. Rev. Lett. 93, 123903 (2004).
    [CrossRef] [PubMed]
  8. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  9. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, �??Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,�?? Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  10. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, �??Design and modeling of a photonic crystal fiber gas sensor,�?? Appl. Opt. 42, 3509-3515 (2003).
    [CrossRef] [PubMed]
  11. J. M. Fini, �??Microstructure fibres for optical sensing in gases and liquids,�?? Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  12. Y. Huang, Y. Xu, and A.Yariv, �??Fabrication of functional microstructured optical fibers through a selective-filling technique,�?? Appl. Phys. Lett. 85, 5182-5184 (2004).
    [CrossRef]
  13. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, �??Water-core fresnel fiber,�?? Opt. Express 13, 3890-3895 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3890">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3890</a>.
    [CrossRef] [PubMed]
  14. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. Auguste, and J. Blondy, �??Stimulated Raman scattering in an ethanol core microstructured optical fiber,�?? Opt. Express 13, 4786-4791 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4786">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4786</a>.
    [CrossRef] [PubMed]
  15. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, �??Selective filling of photonic crystal fibres,�?? J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
    [CrossRef]
  16. B. Bourliaguet, C. Paré, F. �?mond, A. Croteau, A. Proulx, and R. Vallée, �??Microstructured fiber splicing,�?? Opt. Express 11, 3412-3417 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3412">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3412</a>.
    [PubMed]
  17. A. D. Yablon, and R. T. Bise, �??Low-loss high-strength microstructured fiber fusion splices using grin fiber lenses,�?? IEEE Photonics Technol. Lett. 17, 118-120 (2005).
    [CrossRef]
  18. M. Tachikura, �??Fusion mass-splicing for optical fibers using electric discharges between two pairs of electrodes,�?? Appl. Opt. 23, 492-498 (1984).
    [CrossRef] [PubMed]
  19. A. D. Yablon, Optical fiber fusion splicing, (Heidelberg, Germany: Springer-Verlag press, 2005).
  20. User�??s manual for the FSU 975 single fiber fusion splicer by Ericsson.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, �??Microfluidic tunable photonic band-gap device,�?? Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A.Yariv, �??Fabrication of functional microstructured optical fibers through a selective-filling technique,�?? Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

A. D. Yablon, and R. T. Bise, �??Low-loss high-strength microstructured fiber fusion splices using grin fiber lenses,�?? IEEE Photonics Technol. Lett. 17, 118-120 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, �??Selective filling of photonic crystal fibres,�?? J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Meas. Sci. Technol. (2)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

J. M. Fini, �??Microstructure fibres for optical sensing in gases and liquids,�?? Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, �??Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,�?? Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, �??Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,�?? Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Opt. Express (5)

C. Kerbage, and B. J. Eggleton, �??Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,�?? Opt. Express 10, 246-255 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-246">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-246</a>.
[PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, �??Optical devices based on liquid crystal photonic bandgap fibres,�?? Opt. Express 11, 2589-2596 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589</a>.
[CrossRef] [PubMed]

B. Bourliaguet, C. Paré, F. �?mond, A. Croteau, A. Proulx, and R. Vallée, �??Microstructured fiber splicing,�?? Opt. Express 11, 3412-3417 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3412">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3412</a>.
[PubMed]

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, �??Water-core fresnel fiber,�?? Opt. Express 13, 3890-3895 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3890">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3890</a>.
[CrossRef] [PubMed]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. Auguste, and J. Blondy, �??Stimulated Raman scattering in an ethanol core microstructured optical fiber,�?? Opt. Express 13, 4786-4791 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4786">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4786</a>.
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, �??Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,�?? Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

Other (2)

A. D. Yablon, Optical fiber fusion splicing, (Heidelberg, Germany: Springer-Verlag press, 2005).

User�??s manual for the FSU 975 single fiber fusion splicer by Ericsson.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

SEM image of the cross section of the MOF used for the experiment.

Fig. 2.
Fig. 2.

The positioning of the electrode axis when (a) two SMFs are to be fusion spliced, (b) a SMF is to be spliced to a MOF, (c) The current and energy density distribution in an arc fusion splicer[18,19], (d) The close-up of the end part of the MOF in the temperature(energy density) distribution field of Fig. 2(c), (e) Illustration of the transverse temperature distribution in the MOF.

Fig. 3.
Fig. 3.

End-face of the MOF. (a) without arc discharge; (b) arc current =12.5mA; (c) arc current =14.5mA. The discharge duration and offset distance are kept constant at 0.3 second and 50 μm, respectively.

Fig. 4.
Fig. 4.

End views of the MOF with different arc currents when the arc duration is 0.3 second and the offset distance is 50μm. The right picture is the close-up of the center part of the left picture. (a) 12.5mA, (b) 13mA, (c) 13.5mA, (d) 14mA, (e) 14.5mA, (f) 15mA.

Fig. 5.
Fig. 5.

End views of the MOF with different arc durations. (a) 0.3 second, (b) 0.4 second, and (c) 0.5 second. The arc current and offset distance are kept constant at 13.5mA and 50μm, respectively.

Fig. 6.
Fig. 6.

End views of the MOF with different offset distances when the arc duration and arc current are fixed at 0.3 second and 13.5mA, respectively. (a) 50μm, (b) 40μm, (c) 30μm, (d) 20μm, (e) 10μm, (f) 0μm.

Fig. 7.
Fig. 7.

(a) Optical microscope image and (b) SEM image of the MOF with the central hole filled with NOA74.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i ( r , z ) = I 0 2 π σ 2 ( z ) exp ( r 2 2 σ 2 ( z ) ) ,
σ ( z ) = σ 0 ( 1 + C z 2 ) 1 3 , r 2 = x 2 + y 2 .
V collapse = γ 2 η

Metrics