Abstract

Optical and electrical tuning of the propagation time of 170 fs pulses in a quantum dot semiconductor amplifier at room temperature is demonstrated. Both pulse slowdown and advancement is possible and we achieve fractional delays (delay divided with pulse duration) of up to 40%. The results are explained by a simple gain saturation model.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M.S. Bigelow, N.N. Lepeshkin, and R. Boyd, �??Observation of ultraslow light propagation in a ruby crystal at room temperature,�?? Phys. Rev. Lett. 90, 113903-1�??4 (2003).
    [CrossRef] [PubMed]
  2. P.-C. Ku, F. Sedgwick, C.J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, �??Slow light in semiconductor quantum wells,�?? Opt. Lett. 19, 2291�??2293 (2004).
    [CrossRef]
  3. C.J. Chang-Hasnain, P.-C. Ku, J. Kim, S.-L. Chuang, �??Variable optical buffer using slow light in semiconductor nanostructures,�?? Proc. IEEE 91, 1884�??1897 (2003).
    [CrossRef]
  4. A.R. Kovsh et al., �??InAs/InGaAs/GaAs quantum dot lasers of 1.3 mm range with enhanced optical gain,�?? J. Cryst. Growth 250, 729 (2003).
    [CrossRef]
  5. P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401-1�??4 (2002).
    [CrossRef]
  6. G. P. Agrawal, and N. A. Olsson, �??Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,�?? J. Quantum Electron. 25, 2297-2306 (1989).
    [CrossRef]
  7. J. Mørk and A. Mecozzi, �??Theory of the ultrafast optical response of active semiconductor waveguides," J. Opt. Soc. Am. B 13, 1803-1816 (1996).
    [CrossRef]
  8. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, �??Slow light in a semiconductor waveguide at gigahertz frequencies,�?? Opt. Express (submitted).
    [PubMed]
  9. F. A. Hopf, C. K. Rhodes, and A. Szöke, �??Influence of Degeneracy on Coherent Pulse Propagation in an Inhomogeneously Broadened Attenuator,�?? Phys. Rev. B 1, 2833�??2842 (1970).
    [CrossRef]
  10. M. van der Poel, E. Gehrig, O. Hess, D. Birkedal, and J.M. Hvam, �??Ultrafast Gain Dynamics in Quantum Dot Lasers: Theoretical Analysis and Experimental Investigations,�?? J. Quantum Electron. (accepted for publication).

J. Cryst. Growth (1)

A.R. Kovsh et al., �??InAs/InGaAs/GaAs quantum dot lasers of 1.3 mm range with enhanced optical gain,�?? J. Cryst. Growth 250, 729 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (2)

G. P. Agrawal, and N. A. Olsson, �??Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,�?? J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

M. van der Poel, E. Gehrig, O. Hess, D. Birkedal, and J.M. Hvam, �??Ultrafast Gain Dynamics in Quantum Dot Lasers: Theoretical Analysis and Experimental Investigations,�?? J. Quantum Electron. (accepted for publication).

Opt. Lett. (1)

P.-C. Ku, F. Sedgwick, C.J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, �??Slow light in semiconductor quantum wells,�?? Opt. Lett. 19, 2291�??2293 (2004).
[CrossRef]

Phys. Rev. B (1)

F. A. Hopf, C. K. Rhodes, and A. Szöke, �??Influence of Degeneracy on Coherent Pulse Propagation in an Inhomogeneously Broadened Attenuator,�?? Phys. Rev. B 1, 2833�??2842 (1970).
[CrossRef]

Phys. Rev. Lett. (2)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, and D. Bimberg, "Ultralong Dephasing Time in InGaAs Quantum Dots," Phys. Rev. Lett. 87, 157401-1�??4 (2002).
[CrossRef]

M.S. Bigelow, N.N. Lepeshkin, and R. Boyd, �??Observation of ultraslow light propagation in a ruby crystal at room temperature,�?? Phys. Rev. Lett. 90, 113903-1�??4 (2003).
[CrossRef] [PubMed]

Proc. IEEE (1)

C.J. Chang-Hasnain, P.-C. Ku, J. Kim, S.-L. Chuang, �??Variable optical buffer using slow light in semiconductor nanostructures,�?? Proc. IEEE 91, 1884�??1897 (2003).
[CrossRef]

Other (1)

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, �??Slow light in a semiconductor waveguide at gigahertz frequencies,�?? Opt. Express (submitted).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

(a) Measured (dots) and fitted (lines) pulse gain saturation curves for the QD SOA under investigation. See text for explanation. (b) Small signal gain and pulse saturation energy values extracted from the fitted pulse gain saturation curves.

Fig. 3.
Fig. 3.

Self-slowdown and – advancement vs. power and bias of a 170 ps pulse in a QD SOA. For each current, the fractional delay is defined to relative to the propagation time at small pulse energy.

Fig. 4.
Fig. 4.

Pulse advancement in the gain regime (upper panel) and pulse slowdown and distortion at zero bias (lower panel) by comparison of pulses in the small signal regime and close to saturation. The shown pulses have all been normalized to the same height.

Fig. 5.
Fig. 5.

Model results of gain saturation during propagation of a Gaussian pulse.

Fig. 6.
Fig. 6.

Modelled self-slowdown and -advancement times of a pulse under conditions corresponding to those of Fig. 4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = t P in ( t ) d t .
g ( t ) = g 0 1 + E ( t ) E S .
P out ( t ) = P in ( t ) e g ( t ) L ,
Δ t τ 1 2 ( e g L 1 ) E E S .

Metrics