Abstract

A high-speed spectral-domain optical coherence tomography (OCT) system was built to image the human retina in vivo. A fundus image similar to the intensity image produced by a scanning laser ophthalmoscope (SLO) was generated from the same spectra that were used for generating the OCT sectional images immediately after the spectra were collected. This function offers perfect spatial registration between the sectional OCT images and the fundus image, which is desired in ophthalmology for monitoring data quality, locating pathology, and increasing reproducibility. This function also offers a practical way to detect eye movements that occur during the acquisition of the OCT image. The system was successfully applied to imaging human retina in vivo.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregori, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178�??1181 (1991).
    [CrossRef] [PubMed]
  2. S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, �??High-resolution optical coherence tomography-guided laser ablation of surgical tissue,�?? J. Surgical Research 82, 275�??284 (1999).
    [CrossRef]
  3. A. V. D�??amico, M. Weinstein, X. Li, J. P. Richie, and J. G. Fujimoto, �??Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland,�?? Urology 55, 783�??787 (2000).
    [CrossRef] [PubMed]
  4. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Image stabilization for scanning laser ophthalmoscopy," Opt. Express 10, 1542-1549 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1542">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1542</a.>
    [PubMed]
  5. A. G. Podoleanu, G. M. Dobre, R. G. Cucu, R. Rosen, P. Garcia, J. Nieto, D. Will, R. Gentile, T. Muldoon, J. Walsh, L. A. Yannuzzi, Y. Fisher, D. Orlock, R. Weitz, J. A. Rogers, S. Dune, and A. Boxer, �??Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy,�?? J. Biomed. Opt. 9, 86�??93 (2004).
    [CrossRef] [PubMed]
  6. A. G. Podoleanu and D. A. Jackson, �??Noise analysis of a combined optical coherence tomography and a confocal scanning laser ophthalmoscope,�?? Appl. Opt. 38, 2116�??2127 (1999).
    [CrossRef]
  7. C. K. Hitzenberger, P. Trost, P. Lo, and Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11, 2753-2761 (2003), a<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753</a.>
    [CrossRef] [PubMed]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, �??Measurement of intraocular distances by backscattering spectral interferometry,�?? Optics Communications 117, 43�??48 (1995).
    [CrossRef]
  9. G. Häusler and M. W. Lindner, �??Coherence radar and spectral radar�??new tools for dermatological diagnosis,�?? J. Biomed. Opt. 3, 21�??31 (1998).
    [CrossRef]
  10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, �??in vivo human retinal imaging by Fourier domain optical coherence tomography,�?? J. Biomed. Opt. 7, 457�??463 (2002).
    [CrossRef] [PubMed]
  11. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a.>
    [CrossRef] [PubMed]
  12. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435<a/>.
    [CrossRef] [PubMed]
  13. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156<a/>.
    [CrossRef] [PubMed]
  14. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahighresolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404<a/>.
    [CrossRef] [PubMed]
  15. J. W. Goodman, Statistical Optics, Wiley, New York (1985).

Appl. Opt.

J. Biomed. Opt.

G. Häusler and M. W. Lindner, �??Coherence radar and spectral radar�??new tools for dermatological diagnosis,�?? J. Biomed. Opt. 3, 21�??31 (1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, �??in vivo human retinal imaging by Fourier domain optical coherence tomography,�?? J. Biomed. Opt. 7, 457�??463 (2002).
[CrossRef] [PubMed]

A. G. Podoleanu, G. M. Dobre, R. G. Cucu, R. Rosen, P. Garcia, J. Nieto, D. Will, R. Gentile, T. Muldoon, J. Walsh, L. A. Yannuzzi, Y. Fisher, D. Orlock, R. Weitz, J. A. Rogers, S. Dune, and A. Boxer, �??Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy,�?? J. Biomed. Opt. 9, 86�??93 (2004).
[CrossRef] [PubMed]

J. Surgical Research

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, �??High-resolution optical coherence tomography-guided laser ablation of surgical tissue,�?? J. Surgical Research 82, 275�??284 (1999).
[CrossRef]

Opt. Express

D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Image stabilization for scanning laser ophthalmoscopy," Opt. Express 10, 1542-1549 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1542">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1542</a.>
[PubMed]

C. K. Hitzenberger, P. Trost, P. Lo, and Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11, 2753-2761 (2003), a<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753</a.>
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a.>
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156<a/>.
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahighresolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404<a/>.
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435<a/>.
[CrossRef] [PubMed]

Optics Communications

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, �??Measurement of intraocular distances by backscattering spectral interferometry,�?? Optics Communications 117, 43�??48 (1995).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregori, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178�??1181 (1991).
[CrossRef] [PubMed]

Urology

A. V. D�??amico, M. Weinstein, X. Li, J. P. Richie, and J. G. Fujimoto, �??Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland,�?? Urology 55, 783�??787 (2000).
[CrossRef] [PubMed]

Other

J. W. Goodman, Statistical Optics, Wiley, New York (1985).

Supplementary Material (2)

» Media 1: AVI (1899 KB)     
» Media 2: AVI (1826 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experimental system. SLD: superluminescent diode; PC: polarization controller. The spectrometer consists of a f=30 mm collimating lens, a 1200 line/mm transmission grating and a f=100 mm imaging lens. The CCD camera is a 2048 element linear array.

Fig. 2.
Fig. 2.

Fundus images of the left eye of a volunteer acquired with (a,b) our OCT using the algorithm of Eq. (5) and (c) a near-infrared SLO (GDx–VCC™). (a): optic disc; (b) fovea. The images generated by OCT have 512 (horizontal)×128 (vertical) pixels and cover an area of 4mm×4mm on the retina. The SLO image has 256 (horizontal)×128 (vertical) pixels and covers a field of 40°×20°.

Fig. 3.
Fig. 3.

(1.9 MB) A movie of the OCT sectional images and the corresponding fundus image of the fovea. Fundus image size: 4mm×4mm. Displayed OCT depth range: 1.4 mm. The white line in the fundus image indicates the position of the OCT image. The OCT image consists of 512 A-scans. The fundus image consists of 128 B-scans acquired in 2.2 seconds.

Fig. 4.
Fig. 4.

(1.9 MB) A movie of the OCT sectional images and the corresponding fundus image of the optic disc. Fundus image size: 4mm×4mm. Displayed OCT depth range: 1.4 mm. The white line in the fundus image indicates the position of the OCT image. The OCT image consists of 512 A-scans. The fundus image consists of 128 B-scans.

Fig. 5.
Fig. 5.

Frequency distribution of the relative intensity difference between fundus images generated from the frequency spectrum and the wavelength spectrum. The difference is calculated pixel wise.

Fig. 6.
Fig. 6.

(a) Segmentation of the OCT image to produce a reference surface at the RPE; (b) Shadowgram of the image of Fig. 2b formed by intensity summation across the highlighted slab of tissue. The image covers an area of 4mm×4mm on the retina.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

G d ( ν ) = G s ( ν ) { 1 + n R n
+ 2 n m R n R m cos [ 2 π ν ( τ n τ m ) ] + 2 n R n cos [ 2 π ν ( τ n τ r ) ] } ,
Γ ( τ ) = < u ( t ) u * ( t + τ ) > = FT 1 [ G s ( v ) ] ,
I ( τ ) = Γ ( τ ) + Γ ( τ ) n R n
+ 2 n m R n R m Γ [ τ ± 2 ( τ n τ m ) ] + 2 n R n Γ [ τ ± 2 ( τ n τ r ) ] ,
F v 1 ( x , y ) = G ¯ s ( 1 + n R n ) ,
F v 2 ( x , y ) = v { 2 n R n G s ( v ) cos [ 2 π v ( τ n τ r ) ] } 2 = 4 G ¯ s 2 n R n ,
F t ( x , y ) = τ { 2 n R n Γ [ τ ± 2 ( τ n τ r ) ] } 2 .
F t ( x , y , τ 1 < τ < τ 2 ) = τ 1 τ 2 { 2 n R n Γ [ τ ± 2 ( τ n τ r ) ] } 2 .

Metrics